Towards the CESM3 ocean component

Gustavo Marques gmarques@ucar.edu

In collaboration with: Alper Altuntas, Frank Bryan, Keith Lindsay, Ian Grooms, Gokhan Danabasoglu, Mike Levy, and Bill Large

CESM OMWG, February 8, 2024

CESM "workhorse" configurations

	POP2	MOM6
H. Grid	1.125° dipole w/ equatorial refinement	0.66° tripole w/ equatorial refinement
V. Grid	z-coord., dz = 10 m @ surface, 60 levels	z*-coord. or hybrid (z*/isopyc) or vert. mode optimized, dz = 2.5 m @ surface, 65-75 levels
Freshwater B.C.	Constant volume, virtual salt flux	Variable mass, natural B.C
V. Mixing	CVMix-KPP + Langmuir	CVMix-KPP + wave processes
GM+Redi	Marshall N ² scaling	MEKE+GEOMETRIC scaling + Vertical structure in Redi + backscatter
Mixed Layer Eddies	Fox-Kemper et al. (2010), $L_f = 5 \text{ km}$	Fox-Kemper et al. (2010), $L_f = 1 \text{ km} + Bodner et al. (2023)$
H. Viscosity	Anisotropic Laplacian	Isotropic Laplacian + Biharmonic, via MEKE
Solar penetration	Ohlmann (2003)	Manizza (2005)
Advection	3 rd order upwind	Horiz. PPM, Vert. ALE w/ 3 rd order remapping
Other params	Overflow, estuary box model	subgrid scale EOS correction, geothermal, estuary box model

Vertical coordinates

Potential temperature transects across prime meridian:

Contours are layer interfaces and colors are potential temperature.

Global integrated temperature (forced and fully coupled)

Hybrid cools relative to zstar (03/02, 47/46, 55/54). If we go with hybrid in CESM3, need to account for this in F compset RESTOM tuning.

Global T and S drifts (1 JRA cycle)

Zstar is warmer and fresher near the surface (above 500 m); Hybrid is cooler and saltier at depth (below 500 m).

Temperature

Global, Potential Temperature bias [C]

Atlantic T and S drifts

Zstar is warmer everywhere; bias due to Med Sea overflow worse in zstar.

Global zonally-average T and S biases (last 30 years)

Temperature

Zstar is warmer in the Equator; Hybrid is colder in the Southern Ocean. Larger salinity bias in the Black Sea in hybrid.

Atlantic zonally-average T and S biases (last 30 years)

Zstar is warmer and saltier in the Equator.

Loss of resolution in hybrid

Example of where hybrid (hycom1) is not working properly.

It is interacting with the physics via MLE.

Equatorial under current

Weaker EUC in MOM6 (lack of anisotropic viscosity?);

Despite problems we see in hybrid layer thicknesses, that does not strongly impact EUC in central Pacific.

E

40

-80

Plot courtesy of Frank Bryan

ENSO (nino3.4) in fully coupled cases (zstar vs hybrid)

b.e23 alpha16b.BLT1850.ne30 t232.054 - nino3.4 Monthly SST Anomalies - nino3.4 Anomalies + Wavelet Power (K²/unit freq.) **A SST (K)** -2 -3 Period (years) 5 10 Model Year Power Spectrum Variance (K²) Autocorrelation Variance (K²/unit freq.) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 12 24 36 JFMAMJJASOND Period (years) Lag (months) Month

zstar

Hybrid looks good!

Plots courtesy of Rich Neale

Global meridional overturning circulation [Sv]

Atlantic meridional overtuning circulation [Sv]

Drake Passage transport

Modifying the Mixed Layer Eddy Parameterization to Include Frontogenesis Arrest by Boundary Layer Turbulence

ABIGAIL S. BODNER[®],^a BAYLOR FOX-KEMPER,^a LEAH JOHNSON,^b LUKE P. VAN ROEKEL,^c JAMES C. MCWILLIAMS,^d PETER P. SULLIVAN,^e PAUL S. HALL,^a AND JIHAI DONG^{f,g}

$$L_f = C_L \frac{(m_* u_*^3 + n_* w_*^3)^{2/3}}{f^2} \frac{1}{h},$$
 (24)

- $C_L \sim O(\text{Ri})$
- *u*_{*} frictional velocity
- h boundary layer depth
- *w*^{*} turbulent convective velocity
- f Coriolis parameter
- *m*_{*} nondim 0.5
- *n** nondim 0.066

We have been using $L_f = 1$ km in CESM/MOM6

Streamfunction implemented in GCMs:

$$\Psi = C_e \frac{\Delta s}{L_f} \frac{H^2 \nabla_H \overline{b}^z \times \mathbf{z}}{\sqrt{f^2 + \tau^{-2}}} \mu(z).$$
(6)

Global maps of L_f

February

August

Similar length scales in zstar and hybrid

Global MOC induced by MLE: Bodner vs control

Significantly stronger circulation with the Bodner scheme, as expected.

Summer mixed layer depth (m): Bodner vs control

18

Winter mixed layer depth (m): Bodner vs control

19

Towards CESM/MOM6 code base

Known bugs, bug fixes, etc (see full list @ <u>https://github.com/NCAR/MOM6/</u> <u>issues</u> and https://github.com/ESCOMP/MOM_interface/issues)

Tuning and model features

Save the date

Ocean model development, data-driven parameterization, and machine learning in numerical ocean circulation and climate models.

Thank you!

Pros and cons of zstar and hybrid

Pros

Easier to work with native grid

zstar

Cons

- Stronger global heat uptake
- Worse Med Sea overflow

hybrid (hycom1)

- Mitigate thermocline warm bias
- Good ENSO
- Better overflows?
- Stronger AMOC

· Loss of upper-ocean resolution

CESM/MOM6 global 1/4° configuration

- Ocean (MOM6) and sea ice (CICE6) components;
- Nominal 1/4° horizontal resolution in a tripolar grid. Grid built using modified ORCA grid generation;
- Bathymetry and land/sea mask are derived from the Shuttle Radar Topography Mission (SRTM) dataset;
- Vertical grid is z* with 65 layers;
- NCAR vertical physics package via CVmix;

- Mixed-layer eddies parameterization (Fox-Kemper et al., 2011);
- Control has no mesoscale parameterizations (like OM4_025, Adcroft et al., 2019). Biharmonic dissipation is the **maximum** of i) dynamic (Griffies & Hallberg, 2000) $C_s \Delta^4 \sqrt{D_t^2 + D_s^2}$ (C_s = 0.06) and ii) static $u_4 \Delta^3$ (u₄ = 0.01 m/s) contributions;

https://github.com/NCAR/tx1_4

Implementing MEKE/GEOMETRIC in MOM6

Led by Scott Bachman (new CPT, Energetics and mesoscale parameterization) Mesoscale eddy kinetic energy (MEKE) (Jensen et al., 2015):

