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Model biases in the fropical Pacific

CMIP6 SST bias
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TEPEX-Central: observe processes governing zonal movement of the coupled
hydrological cycle at the eastern edge of the warm pool
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MJO teleconnections and ENSO interactions
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Warm pool edge (SST=28.5°C)
migrates zonally on Subseasonal-
to-Interannual (S21) timescales

adapted from Stan et al. 2017
Warm pool edge migration affects
global weather patterns and
predictability across scales
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TEPEX-Central

ocean-atmosphere coupled processes

time (~1 month)
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With barrier layer:

o Stronger surface currents

o Potential for fresh jets

O Greater EEWP extension
Without barrier layer:

o Weaker surface currents

o Weaker fresh jets

O Less EEWP extension
Important consequences for
MJO activity & MJO-ENSO
interactions

Town hall presentation AMS



TEPEX-Central

20°s —

TEPEX-C Observing Array

Warm Pool (28.5°C) Eastward Extension (WPEE)
Jauregui and Chen (2023)
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intensive field campaign at warm pool edge during spring (season of climatological expansion).
land-based assets: MABL profilers, deployable aircraft, UAVs
edge-following ship-based assets: radar, sondes, ocean probes, DC flux packages, UAVs

near-edge uncrewed assets: UUVs, USVs
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Eastern tropical Pacific ocean processes

Heat uptake by vertical mixing
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Eastern tropical Pacific ocean processes

Heat uptake by vertical mixing
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Eastern tropical Pacific ocean processes

Heat uptake by vertical mixing
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Eastern tropical Pacific ocean processes

Heat uptake by vertical mixing
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Vertical mixing biases
from a direct comparison
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Vertical mixing biases
from a direct comparison
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Vertical mixing biases
from an indirect comparison
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Shear driven mixing couples thermocline to surface

Low stratus over cool SST

Easterly winds
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TEPEX-East

Build a comprehensive understanding of the processes and interactions that determine the
structure, strength, and temporal variability of upwelling, mixing, and
ocean-atmosphere coupling across the cold tongue.

Improve model representation of these upwelling and mixing processes.

Learn to infer and diagnose process-level information from the sustained observing system.

Inform the future evolution of the sustained observing system.
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TAO moored array over
example SST
(new NWS
enhancements)
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Campaign builds on NOAA's implementation of the
TPOS 2020 recommendations for the 140°W line



TEPEX-East

® Co-located observations from the thermocline into the atmospheric boundary layer
e Meridional section across the cold tongue, including the front and TIW

Ocean variables: Temperature, velocity, solar penetration and mixing profiles
MABL variables: Temperature, humidity, velocity profiles; thickness, cloudiness

Proposed Field campaign:

Enhanced moorings across the cold tongue and its front along 140°W | |
| Possible strategies

Shipboard measurements (3 cruises 6 months apart) AT 4 A
Uncrewed systems (surface, subsurface ocean, aircraft: TBD) <> \ <><>
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® Model analysis and Observing System Simulation
Experiments to determine most effective sampling



Field Program Targets

TEPEX-Central

Targets the mechanism behind the zonal shifts
of the eastern edge of the warm pool

What:

e Combined roles of WWBs and convection
In air-sea interaction

e Turbulence in the MABL and OML

e Role of barrier layers in variability of edge

How:

e Shipboard, aircraft, uncrewed ocean
vehicles, and land-based measurements

When:

e Spring: largest zonal variability of edge,
WWB are more prevalent

ASTZ

Clayson et al. 2023

TEPEX-East

Targets the meridional structure of
Pacific upwelling and mixing and how they
act to couple atmosphere to thermocline

What:

e Role of shear driven mixing above the
thermocline

e Role of variable wind regimes in air-sea
interaction and mixing

e Interaction of the upper ocean with MABL
and its clouds

How:

e Build on TAO enhancements along 140°W:
deploy additional enhanced moorings,
cruises, uncrewed assets

When:

e Fall + Spring + Fall (TIW reliably present)




Please provide input

* What (other) variables should we measure?¢

* What should we prioritize?

 What would be helpful from model development point of
view?e



