The response of East Asian monsoon to the precessional cycle

Cross-section of a stalagmite

Observation: 3-5‰ of ��¹⁸O change following the precessional cycle

- High insolation \rightarrow low isotope values \rightarrow stronger monsoon
- Coherent pattern among different cave sites over Asia

Data from Wang et al., 2008 Redrawn by Chiang et al., 2015 Observation: 3-5‰ of ��¹⁸O change following the precessional

cycleExisting hypotheses and problems:

<u>Hypotheses</u> <u>Problems</u>

2000

(1) Local precip

change: e.g. Wang et al.,

Previous model results show little precipitation change

Battisti et al., 2014

Observation: 3-5‰ of ��¹⁸O change following the precessional

cycle Existing hypotheses and problems:

Hypotheses Problems

Upstream precip change:

(1) Local precip change: (2)

Previous model results show

little precipitation change

Too small ��¹⁸O change

Pausata et al., 2011, Lee et al., 2009; 2012 Battisti et al., 2014

Observation: 3-5‰ of Observation: 3-5‰ of ����¹⁸18O change

following the precessional cycle O change following the precessional

cycle Existing hypotheses and problems:

<u>Hypotheses</u> <u>Problems</u>

Upstream precip change:

(1) Local precip change: (2)

(3) Precip seasonality change:

Chiang et al. 2015

change Not yet

Previous model results show little precipitation change

proven

Precipitation belt south of the jet East Asian

High O High O Low O High

Observation: 3-5‰ of ��¹⁸O change following the precessional

cycleExisting hypotheses and problems:

<u>Hypotheses</u> <u>Problems</u>

Upstream precip change: (3)

(1) Local precip change: (2)

Precip seasonality change:

change Not yet

Previous model results show little precipitation change

proven

Which is the most reasonable hypothesis and why? <u>Previous model study</u>

Modeled location of Jets in June too north

NCEP NCAR CAM2

and 135E

Longitude avg between 100E

U at 200 hPa in June

Little summer precip

New model study

GFDL AM2

Longitude avg between 100E

U at 200 hPa in and 135E June

GFDL model jets are still north of the Tibet, but not too much. Summer precip is still not very good, but a little better.

Results JJA

Precip June perihelion -

December perihelion

GFDL CM1.2 Max eccentricity: 0.05

CM1.2

Lee et al., 2019

A large (up to 50%) increase in precipitation during the June perihelion case in the coupled ocean-atm simulations

<u>Results</u>

A large (up to 50%) increase in precipitation during the June perihelion case in the coupled ocean-atm simulations

But, not in the slab ocean simulations

Precip June perihelion - December perihelion

CM1.2 SOM

Lee et al., 2019

U at 200hPa in June

Longitude avg between 100E

and 135E **SOM CM1.2**

Weakening and northward

shift of the jet Location and strength not changing significantly Substantial cooling in the northwestern Pacific

Annual mean surface temperature

SOM

CM1.2

$\ensuremath{^{\rm K}}$ Sub-surface temperature is set by the cold season SST

SOM

CM1.2

К Observation: 3-5‰ of ��¹⁸O change following the precessional

cycle Existing hypotheses and problems:

(1) Local precip change: (2)

Upstream precip change: (3)

little precipitation change

Too small ��¹⁸O

change Not yet

Precip seasonality change:

proven

Previous model results show

A large (up to 50%) increase in precipitation during the June perihelion case

Observation: 3-5‰ of ��¹⁸O change following the precessional

cycle Existing hypotheses and problems:

(1) Local precip change: (2)

Upstream precip change: (3)

little precipitation change

Too small � • ¹⁸O

change Not yet

Precip seasonality change:

proven

Previous model results show

A large (up to 50%) increase in precipitation during the June perihelion case

Research questions:

What would be the isotope response? Precip June perihelion - December perihelion

Model results with iCESM forced by GFDL **CM2.1 SST** differences. However, the model shows a large change in precipitation is necessary to explain Symbol: cave sites the observed isotopic Model precipitation results are opposite to change. the observed

update_land_model_fast

update_ice_model_fast

atm_land_ice_flux_exchange flux_up_to_atmos

GFDL model structure

Adding isotopes into GFDL

couple_main

flux_ocn_to_ice

flux_ice_to_ocean

atmos_tracer_gather_data sfc_boundary_layer

update_atmos_model_dynamics update_atmos_model_down

flux_down_from_atmos

model

Start with AM2 with a simpler convective
scheme.
Difficulties: handling small values, if
statements, mass not conserving, not knowing
explicit sources and sinks of

water vapor

flux_up_to_atmos

vert_diff_driver vert_diff vert_diff physics_driver vert_diff_driver_up gcm_vert_diff_up vert_diff_up atmos_model main data structure q updated for the next process, but not to the moistproc_strat_clouds moist_processes strat_cloud_legacy update_atmos_model_up main data structure strat_cloud physics_driver_up moist_processes moist_strat_clouds_legacy q updated for the next process, but not to the moistproc_kernel moist_strat_clouds

flux atmos to ocean update atmos model state

Dignostics??

atmosphere

atmosphere_state_update update_fv_physics q updated

moistproc_ras ras

land_model land_tracer_driver update_land_model_fast_0d update_cana_tracers