Forest ecosystem modeling

From theory and development to calibration and testing

Adrianna Foster Project Scientist I, NCAR CGD Terrestrial Sciences Section

NCAR 2023 CESM Paleoclimate Winter Working Group Meeting February 24, 2023

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

cohort-specific model 30-minute photosynthesis and fluxes daily growth and allocation

FATES operates at multiple scales of a forested ecosystem

NCAR | Adrianna Foster – afoster@ucar.edu

Legacies of forest types in boreal North America

Wildfire severity impacts post-fire organic layer depth and forest regrowth

post-fire organic layer depth

burn severity

Differences in forest type feed back to climate

tundra

Incorporation of vegetation feedbacks improves model performance

Foster et al. 2019

Incorporation of vegetation feedbacks improves model performance

Foster et al. 2019

Incorporation of vegetation feedbacks improves model performance

Applying these concepts with FATES

The National Ecological Observatory Network is a major facility funded by the National Science Foundation and operated by Battelle. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation. © 2019

Simulations with FATES

Plot Observations

Simulations with FATES

Differing forest types

Plot Observations

Belowground conditions – soil moisture

Belowground conditions – soil temperature

FATES and Hillslope Hydrology

Sean Swenson, in prep swensosc@ucar.edu

125 n1/hg

Solomon & Webb 1985

FATES and Paleoecology

Bonan & Hayden 1990

Difficult to calibrate across all scales

NCAR | Adrianna Foster – afoster@ucar.edu

FATES complexity modes

Adrianna Foster – afoster@ucar.edu

NCAR

Calibration cascade

NCAR Adrianna Foster – afoster@ucar.edu

FATES Satellite Phenology PPE

Objectives:

- 1. Sanity check on which parameters actually have an effect in SP mode
- 2. Sensitivity to parameters

Methods:

Borrow from CLM PPE methodology:

- 1. Initial one-at-a-time min/max sensitivity experiment
- 2. Use "sparse grid" to save on time

Parameters

fates Parameter Group fates maintresp allocation allometry canopy CNP hydrology leaf litter mortality patch/cohort fates leaf phenology radiation recruitment respiration turbulence fates_allom_g turnover 2.0 т 1.5 0.5 0.0 1.0 $p_{max} - p_{min}$ $\frac{p_{max}+p_{min}}{2}$

117 parameters photosynthesis radiation leaf traits phenology allometry demographics

NCAR | Adrianna Foster – afoster@ucar.edu

Parameters

00

117 parameters photosynthesis radiation leaf traits phenology allometry demographics

Many parameters had no effect

117 total parameters36 had an impact:

- GPP
- transpiration/LH
- soil temperature
- soil moisture
- albedo

NCAR Adrianna Foster – afoster@ucar.edu

Changes in GPP

Grid cell average

Adrianna Foster – afoster@ucar.edu

Changes in GPP

Grid cell average

NCAR

UCAR

Adrianna Foster – afoster@ucar.edu

Parameter effect – top 20

Adrianna Foster – afoster@ucar.edu

NCAR

UCAR

NCAR | Adrianna Foster – afoster@ucar.edu

Special thanks: NCAR TSS and the FATES Team Dave Lawrence Jackie Shuman Jessica Needham Ryan Knox Greg Lemieux Katie Dagon Daniel Kennedy Erik Kluzek Bill Sacks

Thank you!

