CESM Ocean Model Winter Working Group Meeting, 2023

Scale-dependent vertical structure of eddy kinetic energy in an idealized isopycnal ocean model

<u>Wenda Zhang</u>, Stephen Griffies, Robert Hallberg, Alistair Adcroft, Laure Zanna, and Christopher Wolfe

Thank Elizabeth Yankovsky, Jacob Steinberg, Shafer Smith, Malte Jansen, Baylor Fox-Kemper and the other members of the Ocean Transport and Eddy Energy Climate Process Team for helpful discussions

Vertical Structure of Mesoscale Eddies

- Mesoscale eddies have significant vertical structures of velocity and density anomalies
- These vertical structures need to be accounted for in eddy parameterization

Composite eddy vertical structure in Southern Ocean

0.1

 $\Delta Density [kg m^{-3}]$

Vertical Normal Modes

• Assuming a wave-like solution to the linear QG PV equation yields an equation for the vertical structure

$$\frac{d}{dz}\left(\frac{f_0^2}{N^2}\frac{d\phi}{dz}\right) + \frac{\phi}{L_d^2} = 0$$

• Boundary conditions for classical **flat-bottom** modes:

$$\frac{d\phi}{dz} = 0 \text{ at } z = 0, -H.$$

• Boundary conditions for **rough-bottom m**odes:

$$\frac{d\phi}{dz} = 0 \text{ at } z = 0, \qquad \phi = 0 \text{ at } z = -H$$

Vertical Normal Modes

- Eddy energy from mooring observations is found to be dominated by the **barotropic (BT)** and **first baroclinic mode (BC1)** (Wunsch, 1997)
- Later studies find the eddy vertical structure is more like the first rough-bottom mode (de La Lama et al. 2016), which is also called equivalent barotropic (EBT) mode (e.g., Hallberg 1997)

• Parameterization of interface height diffusivity in the coarse-resolution GFDL OM4.0 uses the first roughbottom mode (ϕ_{EBT}) as its vertical structure (Adcroft et al. 2019):

 $\kappa = 0.5 L U_e \phi_{EBT}(z)^*$

Barotropization

- Eddy energy tends to transform from higher baroclinic modes to barotropic mode and then undergo inverse cascade (e.g., Salmon 1980)
- The barotropization is inefficient when stratification is surface intensified (Smith and Vallis 2001, 2002)
- Eddy length scale from satellite observations correlates to the first-mode Rossby deformation radius (Stammer, 1997)

Energy schematic in Ocean-like

Smith and Vallis (2002)

Role of SQG "mode"

- Traditional vertical modes assume zero buoyancy anomaly at the surface
- $\psi = \psi_{int} + \psi_{sur}$ (Lapeyre and Klein, 2006), with

$$\frac{\partial}{\partial z} \left(\frac{f^2}{N^2} \frac{\partial \hat{\psi}_{sur}}{\partial z} \right) - k^2 \hat{\psi}_{sur} = 0$$
$$f \frac{\partial \hat{\psi}_{sur}}{\partial z} \Big|_{z=0} = b \Big|_{z=0},$$

where ψ_{sur} is described by the surface quasigeostrophic (SQG) dynamics (Blumen ,1978; Held, 1995)

• eSQG method (Lapeyre and Klein, 2006):

$$\hat{\psi}(\mathbf{k}, z) = \frac{g}{f_0} \hat{\eta} \exp\left(\frac{N_0}{f_0} |\mathbf{k}| z\right)$$

where N_0 is the average of N in upper ocean, $\hat{\eta}$ is the SSH spectrum, and **k** is the horizontal wavenumber.

• SQG mode has not been used in parameterization

 eSQG method is effective in reconstructing the vertical structure of eddy properties from surface observations (e.g., Isern-Fontanet et al., 2008; Klein et al., 2009; Qiu et al., 2016, 2020)

Questions

- How prevalent is the SQG mode and how does it arise from baroclinic instability?
- What insights can the SQG mode bring for the understanding of energy cascade and parameterization?

Model: Neverworld2

- Idealized configuration of MOM6
- Double hemisphere
- Isopycnal coordinate, 15 layers
- Horizontal grid spacing: 1/16°
- Forced by zonally uniform zonal wind stress and no buoyancy forcing
- Abyssal meridional ridge of height 2000 m
- Adiabatic and hydrostatic

Vertical Structure of EKE

60

40

20

0 -

-20

-40

-60

0

10

20

) 30 Longitude

Latitude

40

50

60

- Significant fraction of EKE is in the baroclinic modes
- Prediction based on the EBT mode that is diagnosed online:
- $E_{EBT} = \phi_{EBT}(z)^2 EKE_0$
- Can we do better than ϕ_{EBT} at representing the vertical structure?

Role of SQG "mode"

• SQG mode ψ_{sur} is solved from

$$\frac{\partial}{\partial z} \left(\frac{f^2}{N^2} \frac{\partial \hat{\psi}_{sur}}{\partial z} \right) - k^2 \hat{\psi}_{sur} = 0$$

where k is the horizontal wavenumber

• Numerical solution:

$$\hat{\psi}_{sur} \Big|_{z=0} = \frac{g}{f_0} \hat{\eta}, \qquad \frac{\partial \hat{\psi}_{sur}}{\partial z} \Big|_{z=-H} = 0,$$

which assumes SQG mode dominates surface pressure anomaly

• WKB approximations (first order) assuming $\hat{\psi}|_{z=-\infty} = 0$:

$$\hat{\psi}_{sur}(k,z) \approx \hat{\psi}(k,0)e^{-kz_s}$$

where $z_s = \int_z^0 \frac{N}{|f|} dz$, $\hat{\psi}(k,0) = \frac{g}{f_0} \hat{\eta}$

• Vertical structure of $\hat{\psi}_{sur}$ is dependent on horizontal scale

Surface EKE spectrum in $8.7^{\circ} \times 8.7^{\circ}$ windows and averaged over 500 days

Role of SQG "mode"

- SQG mode reproduces the vertical structure of EKE better than the equivalent barotropic mode
- The vertical structure can even be simply approximated by

$$E(z) \approx E_0 e^{-2k_0 z_s},$$

where k_0 is the **energy-containing wavenumber** estimated following Thompson and Young (2006) :

$$k_{0} = \sqrt{\frac{<\left| \nabla \eta_{0}^{\prime} \right|^{2} >}{< \eta_{0}^{\prime 2} >}} \; , \label{eq:k0}$$

where η_0' is the SSH anomaly and $<\!\!\cdot\!\!>$ is a spatial and temporal average.

How does SQG mode arise? PV gradient intensifies at surface and changes sign from surface to interior, which can lead to Charney baroclinic instability Meridional QG PV gradient in layer *i*: $Q_{iy} = \beta + \frac{f_0^2}{H_i} \left(\frac{U_i - U_{i+1}}{g'_i} - \frac{U_{i-1} - U_i}{g'_{i-1}} \right)$ • *(b)* (*a*) Circumpolar Current Subtropics $Q_{1y} = \beta + \frac{f_0^2}{H_1} \left(\frac{U_1 - U_2}{g_1'} \right) + \frac{f_0^2}{g_{H_1}} U_1$ $Q_{Ny} = \beta + \frac{f_0^2}{H_N} \left(\frac{U_N - U_{N-1}}{g_{N-1}'} \right) + \frac{f_0}{H_N} \eta_{by}$ -1000Depth (m) -2000 Isopycnals at longitude 12.5° -3000 -500(c) Western Boundary Current –10 Subpolar -20 0 (d)-1000-1500Depth (m) -1000C b C -2000 Depth (m) -2000 -2500 -3000-3000-3500 6 10 2 8 5 0 4 0 20 -60-40-2040 60 0 Q_v/β Q_v/β Latitude

Vertical structure of unstable modes

• The most unstable mode is generally smaller than the deformation radius L_d

 Vertical structure of unstable modes are similar to the SQG structure and scale-dependent

Smith and Vallis (2002)

Energy cascade in surfacedominated Charney instability

- Horizontal and vertical scales are coupled for surface-dominated Charney modes
- Barotropization and inverse cascade become equivalent
- EKE finally concentrates on the energy-containing scale (mode)

A scale-aware parameterization

• The largest unresolved eddy by grid spacing Δ has a wavenumber k_s

$$k_s = \frac{2\pi}{6\Delta} \approx \frac{1}{\Delta}$$

• A recipe for the parameterization of vertical structure of EKE:

$$E(z,\Delta) \approx \begin{cases} e^{-2k_0 z_s}, & k_s \le k_0 \\ e^{-2k_s z_s}, & k_s > k_0 \end{cases}$$

where
$$z_s = \int_z^0 \frac{N}{|f|} dz$$

A scale-aware parameterization

• A recipe for the parameterization of vertical structure of EKE:

$$E(z,\Delta) \approx \begin{cases} e^{-2k_0 z_s}, & k_s \le k_0 \\ e^{-2k_s z_s}, & k_s > k_0 \end{cases}$$

where
$$k_s = \frac{1}{\Delta}$$
 and $z_s = \int_z^0 \frac{N}{|f|} dz$

It is mostly k_s that dominates the vertical structure at eddy-permitting resolution

Summary

- The vertical structure of EKE depends on horizontal scale
- SQG mode can efficiently capture the vertical structure of EKE in most of extra-tropical regions and is scale-dependent
- The SQG-like vertical structure is likely the result of inverse energy cascade among Charney unstable modes
- A scale-aware parameterization is achieved by combining the largest unresolved scale with the SQG structure
- Charney baroclinic instability has been found prevalent in subtropical gyre, and frontal regions in mid- and high-latitude ocean (Smith 2007; Tulloch et al., 2011; Capet et al., 2016; Feng et al., 2021)

Extra Slides

Linear instability analysis

- Linearized QG PV equation: $\frac{\partial q_i}{\partial t} + J(\Psi_i, q_i) + J(\psi_i, Q_i) = 0$
- QG PV in interior layer *i*:

$$q_{i} = \beta y + \nabla^{2} \psi_{i} + \frac{f_{0}^{2}}{H_{i}} \left(\frac{\psi_{i-1} - \psi_{i}}{g_{i-1}'} - \frac{\psi_{i} - \psi_{i+1}}{g_{i}'} \right)$$

$$Q_{i} = \beta y + \frac{f_{0}^{2}}{H_{i}} \left(\frac{\Psi_{i-1} - \Psi_{i}}{g_{i-1}'} - \frac{\Psi_{i} - \Psi_{i+1}}{g_{i}'} \right)$$

• For the top and bottom layers,

$$q_{1} = \nabla^{2}\psi_{1} + \frac{f_{0}^{2}}{H_{1}} \left(\frac{\psi_{2} - \psi_{1}}{g_{1}'}\right) - \frac{f_{0}^{2}}{gH_{1}}\psi_{1},$$
$$q_{N} = \nabla^{2}\psi_{N} + \frac{f_{0}^{2}}{H_{N}} \left(\frac{\psi_{N-1} - \psi_{N}}{g_{N-1}'}\right)$$

$$Q_{1} = \beta y + \frac{f_{0}^{2}}{H_{1}} \left(\frac{\Psi_{2} - \Psi_{1}}{g_{1}'} \right) - \frac{f_{0}^{2}}{gH_{1}} \Psi_{1}$$
$$Q_{N} = \beta y + \frac{f_{0}^{2}}{H_{N}} \left(\frac{\Psi_{N-1} - \Psi_{N}}{g_{N-1}'} \right) + \frac{f_{0}}{H_{N}} \eta_{b}$$

Assume $\psi = \phi(z)e^{i(\mathbf{kx}-\omega t)}$ and solve for the eigenvalue ω and eigenvector $\phi(z)$.

depth (m)

Phillips case

Role of surface buoyancy

- Surface buoyancy gradient can induce surface-intensified Charney baroclinic instability in subtropical and mid-latitude ocean (Smith 2007; Tulloch et al., 2011; Capet et al., 2016; Feng et al., 2021)
- Meridional QG PV gradient:

$$Q_{y} = \beta + \frac{\partial}{\partial z} \frac{f}{N^{2}} \bar{b}_{y} - \frac{f}{N^{2}} \bar{b}_{y} \Big|_{z=0} \delta(z) + \frac{f}{N^{2}} \bar{b}_{y} \Big|_{z=z_{b}} \delta(z+H)$$

$$E_{SQG}^{p}(z) = EKE_{0} \sum_{k} \widehat{E}_{Numerical}^{p}(k, z)$$
$$E_{SQG}^{k_{0}}(z) = EKE_{0}e^{2k_{0}z_{s}}$$

$$R^{2} = 1 - \frac{\int_{-H}^{0} (E_{diag}(z) - E_{pre}(z))^{2} dz}{\int_{-H}^{0} (E_{diag} - \bar{E}_{diag}^{z})^{2} dz}$$

