Exceptional Multi-Year Prediction Skill of the Kuroshio Extension in the High-Resolution CESM Prediction System

Who M. Kim National Center for Atmospheric Research

Steve Yeager (NCAR), Gokhan Danabasoglu (NCAR), & Ping Chang (TAMU)

2023 CESM OMWG Meeting

February 9, 2023

'AR

Take-Home Message

- Exceptionally high skill (ACC ≥ 0.7 up to LY4) in predicting the decadal Kuroshio Extension (KE) variability in the CESM decadal prediction system at an eddy-resolving ocean resolution (HRDP)
- Substantially higher than skill in the low-resolution counterpart (DPLE with 1º ocean)
- **Source of skill in HRDP**: westward (Rossby wave; RW) propagation of initialized ocean state, guided by the sharp KE front
- The westward propagation is not clear in low-res simulations
- Manuscript in revision (*npj Climate and Atmos. Sci.,* preprint available at https://doi.org/10.21203/rs.3.rs-2402942/v1)

Decadal KE Variability and Predictability

Decadal Variability

Predictiability

- Linear vorticity equation (Qiu et al. 2014; green dashed line)
- ✓ GFDL SPHERE (1º ocean; black and dark green lines)
- Skillful prediction ~ 4 years ahead
- Source of skill: RW propagation
- Do not consider fronts or eddies

Higher Skill at an Eddy-Resolving Resolution?

- KE: sharp fronts and active eddy activity
- KE front wave guide for the RW propagation (Sasaki et al. 2013)
 - Meridionally large initial signal converging into the KE front

SSH regression on KE index (Sasaki et al. 2013)

Prediction Systems

		HRDP	DPLE
Model		CESM1.3 Ocn, Ice - 0.1° Atm, Lnd – 0.25°	CESM1.1 nominal 1°
Initial izatio n	Ocn/Ice	FOSI-H (0.1°)[†] Forc: JRA55-do	FOSI-L (1°)[†] Forc: COREII
	Atm	JRA55 Reanalysis	CESM-LE
	Lnd	HighResMIP Tier 1	CESM-LE
Hindc asts	Start Years (Nov. 1 st)	Every second year for 1982-2016*	Every year for 1954-2017
	Run Length	5 years (62 months)*	10 years (122 months)
	Ens. Size	10	40
Reference		Yeager et al., in revision	Yeager et al. (2018)

[†] Used for analysis
* Analysis restricted by shorter and less frequent HRDP

KE Index (KEI)

Exceptional KE prediction Skill

Source of Skill

(a) Obs (b) FOSI-H (c) FOSI-L SSH Lags -5 FOSI-H: Westward propagation • consistent with obs (~3-4 yrs) 3 FOSI-L: Too fast (~1 yr) to be ٠ considered as a RW propagation 2 WSC anom in FOSI-H propagating ٠ westward in tandem with SSH 1 Lag [Year] anom (coupled interaction?) -1 -2 -3 SSH Leads Con: WSC regression -5 180°W 155°W 130°W 155°E 180°W 155°W 130°W 155°E 180°W 155°W 130°W 155°E Longitude Longitude [°] Longitude [°] -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 r

KE latitude SSH Correlation with KEI as a Function of Longitude and Lag

Source of Skill

140°W

120°W

SSH Correlation on FOSI-H KEI

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8

SSH anomaly converging into the KE 1 front while propagating westward, consistent with Sasaki et al. (2013)

Source of Skill

SSH Correlation on FOSI-H KEI

NCAR NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

- Westward propagation is not clear
- ✓ No convergence of SSH anomalies

10/12

Possible Reasons for the Weak RW Propagation

Summary and Discussion

- Skillful multi-year prediction of biological fields in the upstream KE is expected with HR prediction systems
- Manuscript in revision (*npj Climate and Atmos. Sci.,* preprint available at https://doi.org/10.21203/rs.3.rs-2402942/v1)

DPLE KEI ACC vs. FOSI

SSH anomalies as a function of time and longitude, tracking the propagation of SSH anomalies for +KE event for 2002-2003 and –KE event for 2008-2009

NCAR | NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

SSH anomalies as a function of time and longitude, tracking the propagation of SSH anomalies for +KE event for 2002-2003 and –KE event for 2008-2009

NCAR | NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Regression of WSC in high-res simulations

Regression of winter SST and SLP onto KEI

-0.75 -0.6 -0.45 -0.3 -0.15 0 0.15 0.3 0.45 0.6 0.75 [°C s.d.⁻¹]

Regression of subsurface temperature onto KEI

