## Learning Ocean Model Errors from Data Assimilation Increments

Tarun Verma, Feiyu Lu, Alistair Adcroft

02/09/2023

**CESM Ocean Working Group Meeting** 











SST bias affects many other important phenomena, e.g., Tropical Cyclones (TC)



### Reduction in SST bias improves TC activity (Vecchi et al. 2014)

SST bias

**TC Potential Intensity** 





- vertical mixing, sub-meso-mesoscale eddies etc.
- > Numerics.

Here we propose to (machine) learn ocean model corrections at these fine-scales using data assimilation increments.

## Data Assimilation (DA) Increments and Model Bias





a) DA corrects random errors.b) DA corrects systematic errors.Learning corrections = Learning Increments





Mean SST Bias in CM4.0

Held et al. 2019

## Learn high frequency or low frequency increments?





- X<sub>t,s</sub> is a daily DA increment with t and s indices representing time and space.
- $\langle X_{t,s} \rangle^{d,m,c}$  is a smoothing (or high frequency filtering) operation with daily, monthly or climatological timescales
- Loss function for the neural network can then be written as

$$\boldsymbol{E}\left[\left(\widehat{X}_{t,s}-\left\langle X_{t,s}\right\rangle^{d,m,c}\right)^{2}\right]$$

## Use Neural Nets to learn nonlinear mapping from model state to DA increments



- ✓ **Goal:** local, state-dependent (~parameterization)
- ✓ **Inputs:** daily T,  $T_z$ ,  $U_z$ ,  $V_z$ , hfds, taux, tauy etc.

✓ Output:

- 1) daily climatology of temperature increments
- 2) raw daily temperature increments
- ✓ Architecture: Fully connected neural network (2h32 to 5h256)

60S-59N, 0-360E



- ✓ near-global domain
- ✓ sub-sampled to  $\sim 2^{\circ}$  horizontally
- $\checkmark$  coarsened to 19 levels in vertical
- ✓ sub-sampled every  $3^{rd}$  day

✓ Using GFDL SPEAR DA system which assimilates SST, ARGO observations

✓ 2004-2021





# 1) Learning daily climatology of temperature increments

## Sensitivity to different input predictors



 $[T], [T_z], [T_zU_z], [T_zV_z], [T_zU_zV_z], [T_zU_zV_z sw], [T_zU_zV_z hfds]$ 











## 2) Learning raw daily temperature increments

## Sensitivity to different input predictors





OTA = benchmark based on daily climatology of temperature increments

## Vertical Structure of MSE/RMSE





|                            | ΟΤΑ  | Tz   | TzUzVzSz |
|----------------------------|------|------|----------|
| R <sup>2</sup> (0-30m) (%) | 12.1 | 18.4 | 25.0     |

## 2019-01-01 Truth and Predictions (learning daily vs climatology)





## 2019-2021 mean Truth and Predictions (learning daily vs climatology; K 30-days<sup>-1</sup>)





1.8

### Conclusions



- $\checkmark$  DA increments can be used to learn systematic fast ocean model errors.
- Neural network shows significant offline skill in learning nonlinear relationships between model state and DA increments.
- $\checkmark$  The offline skill improves with the addition of dynamically relevant quantities.
- ✓ A network trained on raw daily temperature increments has better skill in the upper 30 meters which relaxes to the one trained on daily climatology of temperature increments below that.

## Next...

- $\checkmark$  Expand to global domain, remove subsampling, coarsening
- $\checkmark\,$  Joint prediction of temperature and salinity increments.
- ✓ Interpretation and learn missing/inaccurate physics
- ✓ Online inference and evaluation