Frequency dependence of ocean kinetic energy and its change over the period 1983-2018

Nuno Serra(Univ. of Hamburg, Germany)Frank Bryan(NCAR, Colorado, USA)Detlef Stammer(Univ. of Hamburg, Germany)

Motivation

 Positive trends in "eddy" kinetic energy (EKE) have been reported in certain regions (e.g., Southern Ocean) in response to stronger winds (Hogg et al., 2015; Martinez-Moreno et al., 2021).

Motivation

 Remote influence from the tropical Pacific associated with ENSO and PDO force the EKE of the southeast subtropical Indian Ocean at decadal time scales and also explains multi-decadal trend (Delman et al, 2018, Zheng et al., 2018).

Delman et al., JGR, 2018

Motivation

- Model correlation between total KE and geostrophic KE (from SSH) is absent in tropical regions.
- Correlation decreases fast with depth; altimetry can not monitor interior KE (except in few subpolar regions).
- In situ measurements of interior KE (Luecke et al., JGR, 2020) are too sparse and not long enough.

Questions

- How is the ocean kinetic energy distributed in frequency and in depth? What are the relevant processes?
- How did the frequency distribution change in the period 1983-2018? In particular, is the temporal variability at each frequency band related to climate modes?

Model set-up and available integrations

- Global Parallel Ocean Program version 2 (**POP2**) ocean model at **0.1**° resolution with 62 levels. Forced with fluxes from bulk formula + 3-hourly JRA55-do atmospheric state (Kobayashi et al. 2015, Tsujino et al., 2017). Details in Bryan & Bachman (2015), Deppenmeier et al. (2021) and Guo et al. (2022).
- 4 repetitions of 1958-2018 JRA55-do forcing with monthly output. Cycles 1 and 3 include 5-day output for 1983-2018. All second moments (e.g., u^2 and v^2) are accumulated online.

1980-1

\$

relative

(Sv)

a۱

g

Atlantic Overturning Streamfunction

- Cycle 1 trend attributed to model spin-up.
- Cycles 3 and 4 tend to agree in ACC variability.
- Cycle 3 is chosen for the analysis.

Frequency decomposition of kinetic energy

Simple averaging approach: $TKE = \frac{1}{2}(\overline{u^2} + \overline{v^2})$

 $MKE = \frac{1}{2} (\overline{u}^2 + \overline{v}^2)$

averages over long period
(36 or 10 years) of velocity
components (u²,v²) or (u,v)

EKE = TKE - MKE

~40	years 1	year	6 mo	nths	3 ma	onths	1 mo	nth	5 days	model timestep
Ē	AKE (1-year averages)									
		IKE1								
Ľ	SAKE (6-month avera	ges)								
				IKE2						
Ľ	SEKE (3-month avera	ges)								
						IK	E3			
Ľ	MOKE (1-month ave	ages)]		
								SMKE		
Ĺ	WEKE (5-day averag	es)								
	EKE (from u- <u> and</u>	v- <v> averaged a</v>	is above)							НКЕ
ļ	MKE (from u and v lo	ng-term averages	:: <u> and <v< td=""><td>/>)</td><td></td><td></td><td></td><td></td><td></td><td></td></v<></u>	/>)						
	TKE (from u ² and v ² I	ong-term average	s: <u²> and</u²>	<v²>)</v²>						

 $xKE = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{M} \sum_{j=1}^{M} \frac{1}{2} \left[(\bar{u}_{ij}^{A} - \bar{u})^{2} + (\bar{v}_{ij}^{A} - \bar{v})^{2} \right] \quad \text{with} \quad N = (36, 10) \text{ and } M = (N, Nx2, Nx4, Nx12, Nx73)$

 $\overline{()}^{A}$ averages over short period (1yr, 6mo, 3mo, 1mo or 5d)

1983-2018 total (TKE) and mean (MKE) kinetic energy

Frequency dependence of transient kinetic energy (EKE)

Off-equatorial subsurface EKE maximum at intra-annual frequencies

 Subsurface maxima seen in all intra-annual KE components due to strong baroclinic instability of the Phillips type and eddy generation (Feng et al., 2021)

Kessler & McCreary, JPO, 1993

Equatorial Rossby wave activity

- East-west downward slope of intra-annual KE at the equator in all oceans consistent with vertically propagating Rossby waves with upward phase propagation and carrying energy into the deep ocean.
- Generation associated with westward-propagating component of zonal wind (Kessler and McCreary, 1993).
- Indian Ocean has energy at higher frequencies compared to Atlantic or Pacific.
- High-frequency important close to topography and in the Atlantic.

Equatorial Yanai wave activity

• Atlantic Yanai beam in sub-monthly KE related to the interaction between NBC and EUC. Yanai waves are mixed Rossby-gravity waves with downward and eastward energy propagation and upward phase propagation.

Summary KE "spectra"

- Larger contributions to EKE from IKE3 and SMKE (except in subtropical regions). Those bands include the strong mesoscale eddy activity.
- MKE comparable or larger than SMKE (except in tropical Indian Ocean).
- HKE levels might be underestimated due to incomplete forcing of internal wave activity.

1 yr	<	AKE
1 yr	>	IKE1 > 6 mo
6 mo	>	IKE2 > 3 mo
3 mo	>	IKE3 > 1 mo
1 mo	>	SMKE $> 5 d$
		HKE < 5 d

Multi-decadal trends: top-bottom

- Atlantic western boundary TKE decrease due to MKE and IKE3-SMKE but increase over the NAC.
- Slow-down of the western subpolar gyre but increase in northeast Atlantic.
- Agulhas leakage decrease (consistent with uncertainty seen by Ruehs et al., 2022).
- Decrease in Atlantic sector of ACC.
- Indian Ocean TKE changes of submonthly origin.
- Increase in Equatorial Pacific TKE explained by MKE.
- TKE decrease in Pacific subtropics seen in all bands.

-0.5 0 0.5 2010s-1980s trend (x10⁻³ m²/s²/decade)

Multi-decadal trends: Equator,

- Atlantic EUC reduced in thickness and Pacific EUC deepened, as seen in MKE.
- Central equatorial Pacific: increase in intra-annual (1mo.– 1yr) KE and decrease of interannual (>1yr) components.
- Yanai wave beam intensified, however masked by decrease in longer intra-annual KE.

Multi-decadal trends: 43°W (ACC Atlantic sector)

90°E (ACC Indian O. sector)

• Strong reduction in TKE in northern part of ACC partly due to inter-annual variations and to sub-seasonal changes.

• Strong increase in TKE at and south of ACC axes at all frequencies.

Multi-decadal trends:

- Overall increase in Southern ocean zonal wind responsible by an increase in barotropic transport in the ACC.
- Zonal wind stress decrease over Agulhas Retroflection region.

180°E

6

4

-2 0 2 BSF_{2010s} - BSF_{1980s} (Sv)

Conclusions

- Accumulation of energy east of topographic seamounts and ridges.
- Vertical structure mostly surface intensified but relevant interior and bottom intensified signals detected.
- Intensification of energy at mid-depth in the equatorial region of all oceans due to Rossby wave activity.
- Downward and eastward energy propagation along a Yanai wave beam in the Equatorial Atlantic connected to the NBC and EUC.
- Largest contribution to transient EKE from intra-seasonal KE (periods between 5 days and 3 months).
- Significant positive trends in KE in Equatorial Pacific and Indopacific sectors of Southern Ocean.
- Significant negative trends in the Atlantic sector of the Southern Ocean.
- Temporal changes are correlated with climate modes in North Atlantic and in Indo-Pacific sectors of the Southern Ocean.

Final remarks

- Multi-decadal trends (~40 years) still reflect ocean internal variability.
- Caution since is only one realization of a complex system. The ACC features large intrinsic variations compared to forced variability (Hogg et al., 2022).

Hogg et al., JGR, 2022