South Atlantic heat balance in a warming climate

Maurício Rocha¹ (he/him)

In collaboration with: Gustavo Marques², Frederic Castruccio², Gokhan Danabasoglu², Olga Sato¹, Michael Levy², Frank Bryan², Anna-Lena Deppenmeier², Shenfu Dong³, Cecile Hannay², and Keith Lindsay²

¹University of São Paulo (USP), Brazil ²National Center for Atmospheric Research (NCAR), USA ³National Oceanic and Atmospheric Administration (NOAA), USA

Author's Email: mauricio.rocha@usp.br

- I°- Total surface heat flux (SHF):
- Latent heat flux + sensible heat flux +
 longwave heat flux + shortwave heat flux.

- I°- Total surface heat flux (SHF):
- Latent heat flux + sensible heat flux + longwave heat flux + shortwave heat flux.
- 2°- Horizontal heat transport:
- Zonal component. 🔶

- I°- Total surface heat flux (SHF):
- Latent heat flux + sensible heat flux +
 longwave heat flux + shortwave heat flux.
- 2°- Horizontal heat transport:
 - Zonal component. 🔶
 - Meridional component (MHTD). 🖊

- I°- Total surface heat flux (SHF):
- Latent heat flux + sensible heat flux + longwave heat flux + shortwave heat flux.
- 2°- Horizontal heat transport:
 - Zonal component. 🔶
 - Meridional component (MHTD). 🦊
- 3°- Heat storage (HS):
- Mass integral of temperature from the surface to the bottom.

Motivation

- The South Atlantic has been warming significantly since the last century (Cheng et al. 2017, 2020).
- Climate change projections suggest an increase in the heat storage for the South Atlantic (Rodgers et al. 2021).
- Ocean heat storage is directly related to important climate processes.

Motivation

- The South Atlantic has been warming significantly since the last century (Cheng et al. 2017, 2020).
- Climate change projections suggest an increase in the heat storage for the South Atlantic (Rodgers et al. 2021).
- Ocean heat storage is directly related to important climate processes.
- Particular attention to climate change injustice.

NCAR | UCAR Climate and Global Dynamics Laboratory

Email: mauricio.rocha@usp.br

CESM Ocean Model WG 2023

I- Community Earth System Model version 2 Large ENSemble Community Project (LENS2) (Rodgers et al. 2021):

- Fully coupled simulations; ocean model has ~1° for spatial resolution.
- CMIP6 scenario: 165-year simulations (1850 to 2014 historical) plus 86-year simulations (2015 to 2100 forcing SSP370).
- 100 members (micro and macro perturbations).
- These simulations were designed to study different phases of the Atlantic Meridional Overturning Circulation (AMOC).

LENS2 AMOC validation

 Mean AMOC from 1993 to 2020 for different latitudes of the Atlantic Ocean.

 AMOC is well represented when compared to available reanalysis products.

LENS2 AMOC validation

- Mean AMOC from 1993 to 2020 for different latitudes of the Atlantic Ocean.
- AMOC is well represented when compared to available reanalysis products.

5/11

AMOC comparison: present versus future

AMOC comparison: present versus future

- Inflection points have become shallower in the future scenario.
- Antarctic Bottom Water is expanding because **a)** it is getting less dense; **b)** the North Atlantic Deep Water is contracting; or **c**) both **a)** and **b)**.

Meridional heat transport difference (North minus South) (MHTD) and total surface heat flux (to the ocean) (SHF).

Meridional heat transport difference (North minus South) (MHTD), total surface heat flux (to the ocean) (SHF), and heat storage (HS).

• 84% of the HS trend is because of MHTD, and 16% is because of SHF.

NCAR | UCAR Climate and Global Dynamics Laboratory

Meridional heat transport difference (North minus South) (MHTD), total surface heat flux (to the ocean) (SHF), and heat storage (HS).

- 84% of the HS trend is because of MHTD, and 16% is because of SHF.
- 82% of the HS trend occurs in the first 1000 meters (positive trend), and 18% occurs below 1000 meters (negative trend).

More significant weakening at the northern boundary compared to the southern border.

More significant weakening at the northern boundary compared to the southern border.

More significant weakening at the northern boundary compared to the southern border.

Correlation for lag zero with no linear trend

A: 1929-2014 (Historical):

- SHF and MHTD: 0.57
- SHF and HS: -0.84
- MHTD and HS: -0.04

Low influence of MHTD on HS variability.

Correlation for lag zero with no linear trend

A: 1929-2014 (Historical):

- SHF and MHTD: 0.57
- SHF and HS: -0.84
- MHTD and HS: -0.04

Low influence of MHTD on HS variability.

B: 2015-2100 (SSP370):

- SHF and MHTD: 0.34
- <u>SHF and HS: -0.50</u>
- MHTD and HS: 0.64

High influence of MHTD on HS variability.

Concluding remarks

- LENS2 suggests that the South Atlantic will warm mainly due to the weakening of northward heat transport at the northern boundary of the basin.
- This warming occurs in the upper ocean; however, the lower ocean is cooling.
- Northward heat transport is the main driver for the variability of heat storage, whereas, before 2015, this variability was driven by the total surface heat flux.

Concluding remarks

- LENS2 suggests that the South Atlantic will warm mainly due to the weakening of northward heat transport at the northern boundary of the basin.
- This warming occurs in the upper ocean; however, the lower ocean is cooling.
- Northward heat transport is the main driver for the variability of heat storage, whereas, before 2015, this variability was driven by the total surface heat flux.

Next step

• Calculate each component of the northward heat transport to determine which term is responsible for the increase in heat storage.

Thank you for your attention!

Acknowledgements: CESM2 Large Ensemble Community Project and supercomputing resources provided by the IBS Center for Climate Physics in South Korea.

maurocha

https://github.com/NCAR/south_atlantic_heat_balance.git

