A backscatter-only parameterization for mesoscale eddies

Elizabeth Yankovsky In collaboration with Scott Bachman, Shafer Smith, Laure Zanna

Background: NASA Visualization Studio https://elizabethyankovsky.github.io

Motivation: parameterization at eddy-permitting resolutions

NOAA GFDL CM2 Suite, animations by E. Yankovsky

Motivation: parameterization at eddy-permitting resolutions

Under-represented eddies lead to errors in climate prediction.

Energy pathways, tracer distributions, heat uptake □ all hinge upon accurate representation of eddies.

Globally-averaged drift of potential temperature vs. depth for the GFDL CM2 model suite. Griffies et al., Journal of Climate (2014).

Methodology: an idealized resolution hierarchy

Decomposition into quasigeostrophic vertical modes

- Eddies facilitate energetic transfers into graver vertical modes.
- Inverse cascade happens primarily in gravest mode (BT).
- If eddies are unresolved, barotropization and inverse cascade aren't captured. How can we mediate this problem?

Left: Diagram from Ferrari and Wunsch (2009)

We see the same inaccuracies of flow vertical structure in global models at coarse & eddy-permitting resolutions

Scale-aware eddy parameterization

Parameterize interactions of the subgrid MEKE with the resolved flow using a 2D budget (Cessi 2008; Eden & Greatbach 2008; Marshall & Adcroft 2010, Jansen et al. 2020):

$$\partial_{t}e = \dot{e}_{GM} + \dot{e}_{\nu_{4}} - \dot{e}_{\nu_{2}} - \dot{e}_{diss} - \nabla \cdot \mathbf{T}$$
Source: APE
removal by GM
Source: resolved
dissipation
Sink: "Backscatter"
reinjection of KE

Scale-aware eddy parameterization

Parameterize interactions of the subgrid MEKE with the resolved flow using a 2D budget (Cessi 2008; Eden & Greatbach 2008; Marshall & Adcroft 2010, Jansen et al. 2020):

$$\partial_{t} e = \underbrace{\dot{e}}_{V_{4}} + \dot{e}_{v_{4}} - \dot{e}_{v_{2(z)}} - \dot{e}_{diss} - \nabla \cdot T$$
Source: APE
removal by GM Source: resolved dissipation Sink: "Backscatter" reinjection of KE

We remove GM, prescribe $v_2(z)$ with an equivalent barotropic vertical structure.

Surface eddy kinetic energy over 500 days

Existing approach does not capture subgrid KE effects of eddies.

Surface eddy kinetic energy over 500 days

Surface eddy kinetic energy over 500 days

Surface vorticity, modal structure

Sea surface height

Contributions

Our study offers two new insights:

- 1. Buoyancy and momentum effects can **both** be parameterized using a properly formulated KE backscatter **alone**.
- 2. The key factor in having the backscatter behave physically is to accurately represent vertical structure.

Next steps: constraining the modal structure governing $\nu_2(z)$; considering its scale awareness.

Figure 10: Setting the context of prior parameterization developments.

Can existing parameterizations represent barotropization & eddy energetics?

Focusing on the role of GM and backscatter

$$\partial_t \boldsymbol{u} + (f + \zeta) \hat{\boldsymbol{k}} \wedge \boldsymbol{u} + \nabla K + \nabla M = \frac{1}{\rho_0} \frac{\partial \boldsymbol{\tau}}{\partial z} - \nabla \cdot \nu_4 \nabla (\nabla^2 \boldsymbol{u}) + \nu_2 \nabla^2 \boldsymbol{u}, \quad \text{with } \nu_2 < 0.$$

• MEKE budget:

$$\partial_t e = \dot{e}_{GM} + \dot{e}_{\nu_4} - \dot{e}_{\nu_2} - \dot{e}_{diss} - \nabla \cdot T$$

• Backscatter and GM terms may be tuned:

$$K_{GM} = c_{GM} \sqrt{2e} L_{mix} R(\Delta k_d)$$
$$\nu_2 = c_{BS} \sqrt{2e} L_{mix} R(\Delta k_d)$$

Jansen et al. 2019 assume $c_{GM} = -c_{BS}$, tune based on matching global APE

• Consider ½ degree resolution – lower limit of the 'grey zone'