Evaluating model mixing using observational turbulence estimates in the tropical Pacific cold tongue

> Deepak Cherian, Anna-Lena Deppenmeier, Gustavo Marques, Frank Bryan (NCAR) Dan Whitt (NASA Ames) Jim Moum (Oregon State University)

Turbulence at the equator: marginal stability (Ri ~ 0.25)

Smyth & Moum (2013)

Smyth et al (2019)

 $Ri = N^2/(shear^2)$

Forcing reduces Ri

Turbulence increases Ri

Turbulence at the equator: the deep cycle

Diurnal cycle of turbulence below the mixed layer, above the EUC

Obs from Moum et al 2009.

Why measure turbulence at the equator?

Diathermal heat transport through 21.5°C in an ocean model

Holmes et al (2019)

xpods: moored mixing meters

(Moum & Nash, 2009) Deployed on equatorial mooring arrays TAO: **140W** (since 2005), 125W, 110W PIRATA: 23W, 10W

 χ = dissipation rate of temp variance. ε = dissipation rate of velocity variance

Turb Diffusivity $K = (\chi/2)/T_z^2$ Turb Viscosity $v = \varepsilon/U_z^2$

Heat flux = $\rho C_{\rho} K T_{z}$

Warner & Moum (2019)

The ocean's microstructure is meaningfully organized in macroscale patterns,

Hypothesis

Climate models must represent these macroscale patterns of microscale turbulence with fidelity.

Do they?

Large & Gent (1999) : clean and direct comparisons

The comparison of a 1D mixing model with LES or DNS is

- **clean**, because the forcing is the same, and
- **direct**, because the evaluation compares turbulence quantities

The performance of a mixing scheme in global and regional model simulations is commonly tested by comparing the simulated mean state to an observed mean state after a long integration. This comparison is

- **not clean**, because of errors in forcing fields, compensating errors, etc.
- **not direct**, since mean state properties are not a direct output of the mixing scheme.

This talk : not clean but direct

Simulations

- Baseline: CESM, MOM6, 2/3°, z*, 65 vertical levels; KPP
- JRA55 first cycle.
- Default KPP parameters
- Virtual moorings:
 - Save output every hour (every tracer time step) along TAO mooring longitudes (140W etc)
 - State vars,
 - Turbulence vars,
 - Heat budget terms

Changes

- **kpp.Imd.004** Modified KPP parameters
 - Tuned by Whitt's natural intelligence + Whitt et al, 2022 LES.
 - Lower max viscosity: numax=2.5e-3 m2/s, (vs 5e-3)
 - Reduce boundary layer depth: Rib=0.2, (vs 0.3)
 - Shear mixing turns on at higher shear: Ri0=0.5 (vs 0.7)
- branch off baseline in 1992
 - (TAO ADCP velocity measurements start in 1996)
- **kpp.Imd.004.N150** Modified KPP + 150 vertical levels (2.5m top 250m)

Switch

Bonus Confusions: Frequency spectra of shear, velocity

Eastward velocity [m/s] along the Equatorial Pacific, averaged between 0032-01-01 and 0061-12-31

Eastward velocity [m/s] along the Equatorial Pacific, averaged between 0032-01-01 and 0061-12-31

n.e23.GJRAv3.TL319_t061_zstar_N65.baseline.kpp.lmd.004.mixpods, averaged 0032-01-01 to 0061-:

Next

- Atlantic (PIRATA; 23W, 10W)
- (Moum et al 2022, JPO)
- More diagnostics

Eastward velocity [m/s] @ 220.0, averaged between 0032-01-01 and 0061-12-31

Eastward velocity [m/s] @ 220.0, averaged between 0032-01-01 and 0061-12-31

Marginal Stability Diagram: S2-4N2

Contours enclose 50% of data; El-Nino dT/dt phases

- S^2-4N^2 in between 70m and surface (obs limitation + crude EUC filter)
- Use N^2 with T only (obs limitation)
- Use daily averaged u,v,T instead of hourly (model spectrum is deficient)
- Haven't matched vertical resolution (shear spectra drop off at 30m wavenumber)

Turbulence Histograms: still too much dissipation

