HYCOM1 VS HYBGEN FOR ALE REGRIDDING

Alan Wallcraft

Center for Ocean-Atmospheric Prediction Studies (COAPS) Florida State University

CESM Ocean Model Working Group Meeting

9 February 2023

BASIC ALE APPROACH

- For each time step:
- Solve the layered continuity equation
 - Move all the layers
- Apply Arbitrary Lagrangian Eulerian (ALE) Method in the vertical
 - Regrid: select the "desired" layer structure
 - HYCOM1 and HYBGEN:
 - · Favor isopycnals that outcrop into fixed depth layers
 - Remap: from the source to the regrid layers
 - Interfaces can move, but the fluid does not move
 - Choose interpolation that is conservative, with no new extrema
 - Nominally, this does not change the solution but it does add diffusion

MOM6 ALE: HYCOM1

- Regridding walks a monotonic vertical profile
 - Source is layer sigma2 potential density, with a compressibility factor
 - Factor reduces the chance that layer N+1 is lighter than layer N
 - From these layer densities and the layer thicknesses, construct a vertical profile using piecewise polynomials
 - Profiles can be from a remapping scheme (e.g. PPM_H4)
 - P1M_H2, linear between H2 interfaces, is the only practical scheme
 - \circ Target is interface sigma2 potential density plus compressibility factor
 - Constant in time and space
 - \circ The new interface depths are at the location of targets on the profile
 - Unique mapping from a monotonic profile to the target isopycnals
- Vertical remapping typically uses PPM_H4 for all layers, where H4 indicates a cubic polynomial calculation of interface (edge) values
 - PPM limits edge values to lie between layer averages
- Produces smooth interfaces, no need for an additional interface smoother

MOM6 ALE: HYCOM1 REGRIDDING

- Why not use the REMAP piecewise polynomials for REGRID?
 - **PPM_H4** eventually produces unstable layers
 - PPM_CW, Colella and Woodward (1984), might be OK.
 - Adds a monotonic profile constraint to _H4 edges
 - Not yet in dev/gfdl
- The new interface depths are at the location of targets on the profile
- However, the actual new interface densities are:
 - Remap (e.g. PPM_H4) T & S to new interfaces, and then reapply
 _H2 (linear) or _H4 (cubic) to the new layer densities and thicknesses
 - The latter step is not performed in the running model
- The new interface densities can be approximated by holding the density profile fixed except for a single interface and applying the remapping and edge recalculation steps to get the new density at that interface
 - \circ Allows us to visualize the effect of moving the interfaces
 - Orange curves on upcoming plots

Potential Density at 95W25N, REGRID=P1MH2 REMAP=PPMH4

Potential Density at 95W25N, REGRID=REMAP=PPMH4

Potential Density at 95W25N, REGRID=REMAP=PPMCW

HYCOM (MOM6) ALE: HYBGEN

• Target is layer average sigma2 potential density

• Constant in time, constant (MOM6) or varying (HYCOM) in space

Regridding uses entrainment

- Maintain isopycnal layers
 - If layer is too heavy, entrain from layer above
 - If layer is too light, entrain from layer below
- \circ Sometimes an interface needs to move both up and down
 - Greedy algorithm, start from top and work down
 - Often get thick-thin-thick-thin layer structure
- Use PCM for near-isopycnal layers: regridding and remapping
 - Greatly simplifies entrainment/detrainment regridding
 - Detrainment (thinning) does not change layer density
 - \circ PCM is 1st order accurate and very diffusive
 - Regridding does not effect most (iso-pycnal) layers
 - \cdot No regridding, no loss of accuracy and no diffusion
- Vertical remapping typically uses PPM with WENO-based cubic edge calculations for fixed and non-isopycnal coordinate layers
- Produces noisy interfaces, that require an interface smoother

HYBGEN vs HYCOM1

- HYBGEN assumes the source layer structure is close to the desired result, HYCOM1 makes no such assumption (number of layers in/out can differ)
 - HYCOM1 can regrid from z coordinates to isopycnals, HYBGEN can't
 - MOM6 uses HYCOM1 as a vertical interpolator, e.g. for initialization, INTERPOLATE_SPONGE_TIME_SPACE and ODA_INCUPD
- HYBGEN often produces a thick-thin-thick-thin layer structure, and HYCOM1 does not
- HYBGEN maintains isopycnal layers exactly but HYCOM1 does not
 - If a layer changes thickness adiabatically:
 - Its layer average potential density (HYBGEN) is unchanged
 - Its interface potential density (HYCOM1) is not, because this depends on nearby layer thicknesses and densities
 - So the associated interfaces are moved by the HYCOM1 regridder and preserved by the HYBGEN regridder
- In general, HYBGEN moves interfaces significantly less than HYCOM1, so HYBGEN likely causes less diapycnal diffusion than HYCOM1

GULF STREAM LAYER 22 REGRID THICKNESS CHANGE (M/DAY) SNAPSHOT

- 0.08 degree Atlantic MOM6 with 41 layers, CFSR 2003 repeated forcing
- Run for 31 days with INTERFACE_FILTER after 10 years of HYCOM1
- Change from REGRID only, 50 m/day is 17 cm/timestep (DT_THERM=300s)

HYBGEN

HYCOM1

GULF STREAM 31N & 33N REGRID THICKNESS CHANGE (M/DAY) SNAPSHOT

- 0.08 degree Atlantic MOM6 with 41 layers, CFSR 2003 repeated forcing
- Run for 31 days with INTERFACE_FILTER after 10 years of HYCOM1

31N & 33N HYBGEN

31N & 33N HYCOM1

ATLANTIC OVERTURNING STREAMFUNCTION, OVER YEARS 8-10 (I)

- 0.08 degree Global with 41 layers, CFSR 2003 repeated forcing
- 25S to 65N and 0 to 6500m depth, 2.5 Sv contour interval GLOBAL HYCOM (HYBGEN) GLOBAL MOM6 (HYCOM1)

HYCOM at 26°N: max 11.6Sv at 1000m; 0Sv at 3500m MOM6 at 26°N: max 14.0Sv at 0900m; 0Sv at 2730m RAPID array at 26°N: max 17.0Sv at 1000m; 0Sv at 4300m

• GFDL's MOM6 HYCOM1 cases (e.g. 75-layer OM4_025) are similar

ATLANTIC OVERTURNING STREAMFUNCTION, OVER YEARS 8-10 (II)

- 0.08 degree Atlantic-only with 41 layers, CFSR 2003 repeated forcing
- SPONGE to monthly climatology near 28S and 80N
- 25S to 65N and 0 to 6500m depth, 2.5 Sv contour interval

ATLANTIC HYCOM (HYBGEN)

ATLANTIC MOM6 (HYCOM1)

HYCOM at 26°N: max 14.9Sv at 1000m; 0Sv at 6200m MOM6 at 26°N: max 14.8Sv at 0900m; 0Sv at 2910m RAPID array at 26°N: max 17.0Sv at 1000m; 0Sv at 4300m 0.08 ATLANTIC BOTTOM SIGMA-2 P.DENSITY: FEBRUARY YR10 (I)

- A shallow Atlantic overturning streamfuction is often due to too light overflow from the Nordic Seas
- HYCOM is denser below 1500m isobath
 - Slightly lighter than observed

• Both are slightly denser than their GLOBAL twins

BEST MOM6 ATLANTIC CONFIGURATION

- 0.08 degree Atlantic-only with 41 layers, CFSR 2003 repeated forcing
- USE_MEKE=False, **BBL_EFFIC=0**, CORRECT_BBL_BOUNDS=True
- CORIOLIS_SCHEME="SADOURNY75_ENERGY"
- KD=.1E-4, KV=.3E-4, HENYEY_IGW_BACKGROUND=False
- KH_VEL_SCALE=.00286, AH_VEL_SCALE=.02, no SMAGORINSKY
- REGRIDDING_COORDINATE_MODE="HYCOM1":
 - KH_ETA_CONST=20 (for OM_025 this would be 62.5),
 DETANGLE_INTERFACES=True, KHTH_MAX_CFL=.8
 - REGRID_COMPRESSIBILITY_FRACTION=0.01
 - INTERPOLATION_SCHEME="P1M_H2", REMAPPING_SCHEME="PPM_H4"
 - REGRID_FILTER_SHALLOW_DEPTH=90, REGRID_FILTER_DEEP_DEPTH=114, REGRID_TIME_SCALE=6000 (5 * DT_THERM): better Gulf Stream separation
- or REGRIDDING_COORDINATE_MODE="HYBGEN":
 - THICKNESSDIFFUSE=False, APPLY_INTERFACE_FILTER=True
 - INTERFACE_FILTER_ORDER=4, INTERFACE_FILTER_TIME=10800
 - REMAPPING_SCHEME="WENO_HYBGEN"
 - HYBGEN_RELAX_PERIOD=16 (16 x DT_THERM = 4800s)
 - **DT_THERM=300** (same as **DT**)

0.08 ATLANTIC BOTTOM SIGMA-2 P.DENSITY: FEBRUARY YR10 (I)

- HYBGEN: INTERFACE_FILTER_TIME=10800, DT_THERM=300 — slightly denser than ATLANTIC HYCOM —
- HYCOM1: KH_ETA_CONST=20, DT_THERM=1200
- correct/to dense west/east of the Reykjanes Ridge -

• However, "BEST" GLOBAL MOM6 HYCOM1 still very light

ATLANTIC OVERTURNING STREAMFUNCTION, OVER YEARS 8-10 (III)

- Best 0.08 degree Atlantic-only with 41 layers, CFSR 2003 repeated forcing
- 25S to 65N and 0 to 6500m depth, 2.5 Sv contour interval

ATLANTIC MOM6 HYBGEN

ATLANTIC MOM6 HYCOM1

HYBGEN at 26°N: max 16.2Sv at 1000m; 0Sv at 3900m HYCOM1 at 26°N: max 16.3Sv at 1000m; 0Sv at 3600m RAPID array at 26°N: max 17.0Sv at 1000m; 0Sv at 4300m

SUMMARY

- Based on results presented here, and other evidence, HYCOM1 has more diapycnal diffusion than an isopycnal-favoring method should
 - o PPM_CW + PPM_CW less diffusive than P1M_H2 + PPM_H4
 - No exact measurements, but for a Gulf of Mexico domain HYBGEN with 10x KD has better Loop Current eddy behavior that HYCOM1
- HYBGEN has minimal diapycnal diffusion, but has other issues
 - Thick-thin-thick-thin layer structure reduces effective vertical resolution
 - MOM6: DT=DT_THERM, no compressibility factor, not an interpolator
 - Requires additional interface smoothing
- Can we engineer a layer density based approach that improves on HYBGEN?
 - HYBGENI walks a monotonic vertical density profile, like HYCOM1
 - Does not produce a thick-thin-thick-thin layer structure
 - More diapycnal diffusion than HYBGEN, much less than HYCOM1
 - Stabilizes the density profile, but not with a compressibility factor
 - Working in HYCOM, still being tested in MOM6
- Can we engineer a HYCOM1-like scheme with acceptable diapycnal diffusion?
 - Still some ideas to try, but not so far for interface density targets
 - HYBGENI, which targets layer density, is inspired by HYCOM1
 - Similar to HYCOM1 P1M_H2 when its isopycnal detection is turned off