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Ocean Mixed Layer

• Mixing and turbulence controls 
atmosphere-ocean interactions 

• Accurate representation of fluxes is 
crucial for climate simulations

• Small, fast and complex processes

• Unresolved in General Circulation 
Models
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Data from submesoscale permitting simulation
MITgcm-llc4320 (horizontal resolution 1/48! ~2km)

Torres et al (2018)
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10!𝑋10!

Data from submesoscale permitting simulation
MITgcm-llc4320 (horizontal resolution 1/48! ~2km)

Made possible by the xmitgcm llcreader package 
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• Select 10!𝑋10! domains from global 
simulation

• Total of 14 months of hourly data, 
downsampled to 12 hours

• Train Neural Network to predict 
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Data from submesoscale permitting simulation
MITgcm-llc4320

• Inputs (1/4! resolution): 
Mixed layer depth, boundary layer depth, 
wind stress, surface heat flux,
Coriolis, MLD-averaged buoyancy gradient, 
MLD-averaged stratification

• Target (1/4! resolution): : 
MLD-averaged vertical buoyancy flux



Inputs (resolved by GCM):
Target
Subgrid submesoscale
vertical buoyancy fluxes

Data from submesoscale permitting simulation
MITgcm-llc4320

• Inputs (1/4! resolution): 
Mixed layer depth, boundary layer depth, 
wind stress, surface heat flux,
Coriolis, MLD-averaged buoyancy gradient, 
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• Target (1/4! resolution): : 
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Convolutional 
Neural Network



Offline Training Results
• Fully Convolutional Neural Network 

(7 hidden layers, kernel 5x5)

• ~10,000 samples: 90% train, 10% test
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Offline Training Results
• Fully Convolutional Neural Network 

(7 hidden layers, kernel 5x5)

• ~10,000 samples: 90% train, 10% test

• Prediction is a smoothed version of target
• Spectral properties match at large scales but taper 

off at small scales 
• PDFs of prediction are also skewed

TargetPrediction Fox-Kemper 2008

PDFs Spectra



Ocean Mixed Layer
Parameterizations

• Predicting vertical buoyancy flux

• Down-gradient flux 
(e.g. KPP, epbl):

• Eddy Streamfunction
(e.g. GM, FK08):

Eddy fluxes define streamfunction Bolus velocity represents stirring

MLE BLT

Diffusivity

Data-Driven





Summary and future work
• Data-driven approach for parameterizing vertical  

submesoscale buoyancy fluxes given by the ultra-
high resolution MITgcm-llc4230

• Predicted fluxes are smoother compared to 
target but resemble in large-scale statistics 

• Exploring different NN architectures to learn 
finer-scale features  

• Testing sensitivity to input variables
• Do we need all?
• Any others relevant? e.g. strain, divergence

• Developing different approaches for GCM 
implementation which correspond to relevant 
ocean parameterizations

BLT
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