

Ecosystem structure and seasonal variation in California annual grasslands in CLM-FATES

Xiulin Gao, Charles Koven, Lara M. Kueppers, Polly Buotte, Marcos Longo, Chonggang Xu, Zachary Robbins, Sam Levis

Acknowledgement: Stefan Rahimi , Alex Hall, Declan Farriday, Jackie Fenner, Paige Lund, Spencer Goldstein, Oxford greenhouse staff

California annual grassland and its phenology

The divergent tree and grass allometry

Blue oak data: Karlik and Chojnacky, 2014

Project objectives and goals

- Examine model sensitivity to grass biophysical traits and allometry
- Determine the most influential parameters for grass fire
- Generate parameter sets that can reconstruct site structure and seasonal variation in matter and energy fluxes
- Assess model performance in simulating regional GPP, LAI, and burned fraction with site-derived parameters

The greenhouse experiment and new grass allometry

Model parameter settings

	Parameter	Min	Max	Source
Leaf traits	Leaf diameter (m)	0.01	0.04	Experience
	Leaf turnover (yr ⁻¹)	0.02	0.32	TRY
	SLA (m2.gC ⁻¹)	0.015	0.072	TRY
	Vcmax (umol CO2.m ⁻² .s ⁻¹)	35.6	91.6	Griffith et al. 2020; Maire et al. 2012
	Stomatal intercept (umol H2O.m ⁻² .s ⁻¹)	10000	2030000	Miner et al. 2016
	Stomatal slope (unitless)	5.25	17	Miner et al. 2016
	Leaf N content (leaf gN.leaf gC ⁻¹)	0.01	0.06	TRY
Allocation	Reproduction DBH threshold (cm)	1.5	4	Gao et al. 2023 (unpublished yet)
	Seed allocation (mature, fraction)	0.1	1	Experience
	Recruitment min. height (m)	0.1	0.5	Experience
	Storage allocation (fraction)	1	1.5	Experience
Phenology Mortality	Drought deciduous SWC% (m ³ .m ⁻³)	0.1	0.23	Baldocchi et al. 2004
	smpsc (mm H ₂ O)	-200000	-60000	Experience
	smpso (mm H₂O)	-60000	-33000	Experience
	Rooting depth parameter a (unitless)	5	13	Rooting depth no deeper than 1m
	Rooting depth parameter b (unitless)	3	10	Rooting depth no deeper than 1m
	Soil moisture (drought mort begin, unitless)	0.25	0.9	Experience
	Hydraulic mortality scalar (yr ⁻¹)	3	20	Experience
	Carbon starvation mortality scalar (yr ¹)	1	6	Experience
	Growth respiration (unitless)	0.1	0.5	Experience
Fire	Fuel bulk density (dead, kg.m ⁻³)	4	22	Prior et al. 2016 Snell 1979
	Fuel bulk density (live, kg.m ⁻³)	1	4	Snell 1979
	Ignition density (strikes.km ² .yr ⁻¹)	0.01	1	Keeley and Syphard 2018
	Fuel drying ratio (unitless)	66	66000	Experience
	Fuel energy (kJ.kg ⁻¹)	6450	14300	Simpson et al. 2015
	Max. litter fragmentation rate (g.g ⁻¹ .yr ⁻¹)	0.8	1.6	Zhang et al. 2018

Study region and model experiments set up

Step1: biophysical parameter perturbations at site level

Step2: fire parameter perturbations at site level

Step3: assess model performance at regional level with sitederived parameters

AVBA

BRDI

Grass allometry influenced model simulations of water, carbon, and energy fluxes

Soil water content triggering drought-deciduous phenology shapes the seasonal dynamic

Importance of model parameters also has a seasonal pattern that depends on the phenology of the PFT

Leaf area index

Variance explained (%)

10

Selected best parameter sets can well represent site characteristic and seasonal dynamic

е

d

Site
AVBA-NoFire-400
BRDI-NoFire-400
GENL-NoFire-400

Burned fraction in FATES is largely determined by fuel bulk density

With site-derived parameters, FATES can capture regional pattern of LAI

FATES tended to overestimate burned fraction in most area

Take-homes and future work

- Grass allometry is important; soil water content as a trigger for drought deciduous phenology shape the seasonal variation in water, carbon, and energy fluxes in California annual grasslands; with site-derived parameters, FATES is able to capture the spatial pattern in LAI but not burned fraction.
- This study provides better understanding of grass PFT in FATES, also the first step toward understanding the fire-mediated tree-grass coexistence in California oak savannas.
- Next step: oak-C₃ grass competition and coexistence in the transition zone in CA and how these grassy ecosystem responses to future changes.

Soil water content triggering drought-deciduous phenology and mortality shape the seasonal variation in matter and energy exchange

Importance of model parameters also has a seasonal pattern that depends on the phenology of the PFT

а

GPP

The correlation between model parameters and variables (survived ensembles only)

Model fire parameter and fire behavior variables correlation

Variations in forcing variables such as temperature, precipitation, and wind speed contributes to the spatial pattern in model simulated burned fraction

FATES is able to capture the seasonality of burned fraction in California compared to observed lightning-ignited wildfires

