Using CLM-FATES in the Voluntary Carbon Credit Market

Source: Climate Focus analysis of data collected for the VCM Dashboard (July 2022).

Polly Buotte

 Reliable carbon projections
 Account for natural risk
 Provide social and biodiversity co-benefits

Initial Project Site: Azuero corridor, Panama

Group trees based on stature and growth rate

Mature Tree Stature

Gather trait data

TRY database plus additional literature search including Spanish and Portuguese literature

Define PFTs

Mature Tree Stature

	Short < 10m	Medium 10-20m	Tall > 20m
Slow		4 Manilkara zapota, Protium tenuifolium,Gustavia hexapetala: low potential, cost, SLA, high drought; 0.81 density	7 Calophyllum Brasiliense, Brosimum alicastrum low potential, cost, SLA, moderate drought; 0.55-0.78 density
Moderate	 1 Zygia longifolia: higher potential and cost, lower SLA, mod drought 0.71 density 2 Anacardium occidentale: high potential, moderate cost, low area, moderate drought, wide crown; 0.37-0.4 	5 Chrysophyllum cainito, Lacmellea panamensis: low potential, mod cost, low SLA, mod drought. High SLA ratio top to bottom 0.66 - 0.74 density	 8 Terminalia amazonia, Brosimum alicastrum, Anacardium excelsum, Ormosia macrocalyx: lower potential and cost, higher SLA, mod drought, higher SLA ratio; 0.65-0.75 density 9 Anacardium excelsum, Ficus incinida lang encetability
Fast	3 Cecropia peltata,Garcinia intermedia:, Psidium guajava high potential and cost, moderate SLA, low drought;0.30 density	6 Inga laurina, Inga punctata, Genipa americana, Brosimum utile, Vochysia ferruginea: moderate potential and cost, high SLA, high drought; 0.86 density	Pentaclethra macroloba: high potential and cost, lower SLA, low drought; 0.40 - 0.50 density

Growth Rate

Define allometry from Tallo database

Martinez-Cano et al. 2016 h = (a*dbh**b)/(c+dbh**b)

	а	b	С
short	12.75	0.35	6.62
med	42.01	0.61	16.42
tall_slo w	74.14	0.79	35.41
tall_fast	50.64	0.99	25.04

Benchmark growth rates from single PFT runs

Growth data from:

Hall, J.S. and M.E. Ashton, 2016. Guide to early growth and survival in plantations of 64 tree species native to Panama and the Neotropics. Smithsonian Tropical Research Institute. Balboa, Panama, 173pps

Sinacore, K., García, E.H., Howard, T. *et al.* Towards effective reforestation: growth and commercial value of four commonly planted tropical timber species on infertile soils in Panama. *New Forests* **54**, 125–142 (2023). https://doi.org/10.1007/s11056-022-09906-0

Benchmark carbon accumulation

Benchmark carbon accumulation at new sites

Risk from fire and climate change

 Evaluating fire mortality across ignition frequencies (colors) and planting mixtures

Annual Average % Mortality from Fire

□ Will run with future climate scenarios

Conclusions and next steps

- Local knowledge was critical
- Further evaluation across metrics and locations

Exploring risks and co-benefits

- Fire model and human ignitions
- Structural diversity
- Temperature and soil water effects

Working towards

- Annual planting to offset mortality
- Agroforestry
- Cloud-based capabilities to increase user access (with Brian Dobbins, Will Wieder, Teagan King)