Scoring Changes in the ILAMB Methodology

Nathan Collier Forrest Hoffman Dave Lawrence The ILAMB Team

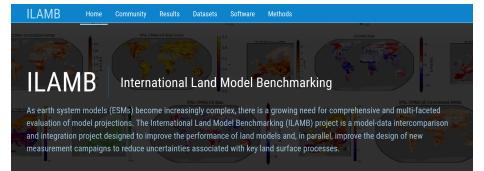
> RUBISCO Oak Ridge National Laboratory February 2023

ILAMB = International Land Model Benchmarking

- Community: global group of scientists enthusiastic about benchmarking
- Methods: innovative assembly of techniques for benchmarking models
- Software: open-source python package
 - https://github.com/rubisco-sfa/ILAMB
 - conda config --add channels conda-forge conda install ilamb
- Datasets: curated collection of datasets formatted for easy comparison
 - https://github.com/rubisco-sfa/ILAMB-Data
- ▶ **Results:** catalog of comparisons which you can access and peruse

Los Alamos

- https://www.ilamb.org/CMIP5v6/historical/
- https://www.ilamb.org/CMIP5v6/IOMB/
- https://www.ilamb.org/land-hist/



Revamped ilamb.org

1 DECEMBER 2022

Argonne

ILAMB intake Catalog

We are pleased to announce that the reference datasets that we have reprocessed and can be mass downloaded via <u>liamb-fetch</u> are now also available as an <u>intake</u> catalog. Intake is a lightweight set of python tools for loading and sharing data in data science projects. It allows you to write python code referencing the LLAMB datasets by name, and then intake manages the download, using cached versions if available on your system.

ILAMB Collection

Albedo	CERESed4.1, GEWEX.SRB	
Biomass	Tropical, GlobalCarbon, NBCD2000, USForest, Thurner, ESACCI	
Burned Area	GFED4.1S	
Carbon Dioxide	NOAA.Emulated	
Diurnal Max Temperature	<u>CRU4.02</u>	
Diurnal Min Temperature	<u>CRU4.02</u>	
Diurnal Temperature Range	<u>CRU4.02</u>	
Ecosystem Respiration	FLUXNET2015, FLUXCOM	
Evapotranspiration	GLEAMv3.3a, MODIS, MOD16A2	
Global Net Ecosystem Carbon Balanc	e <u>GCP</u> , <u>Hoffman</u>	
Gross Primary Productivity	FLUXNET2015, FLUXCOM, WECANN	
Ground Heat Flux	<u>CLASS</u>	
Latent Heat	FLUXNET2015, FLUXCOM, DOLCE, CLASS, WECANN	
Leaf Area Index	AVHRR, AVH15C1, MODIS	
Net Ecosystem Exchange	FLUXNET2015	
Nitrogen Fixation	Davies-Barnard	
Permafrost	<u>NSIDC</u>	
Precipitation	CMAPv1904, FLUXNET2015, GPCCv2018, GPCPv2.3, CLASS	
Runoff	Dai, LORA, CLASS	
Sensible Heat	FLUXNET2015, FLUXCOM, CLASS, WECANN	
Snow Water Equivalent	CanSISE	

In [1]: import intake

...: cat = intake.open_catalog("https://raw.githubusercontent.com/nocollier/intake-ilamb/main/ilamb.yaml")

In [2]: cat[']

In [L], cuci		
'albedo CERESed4.1'	'lai MODIS'	'rlns GEWEX.SRB'
'albedo GEWEX.SRB'	'mrro CLASS'	'rlns WRMC.BSRN'
'biomass ESACCI'	'mrro Dai'	'rlus CERESed4.1'
'biomass NBCD2000'	'mrro LORA'	'rlus FLUXNET2015'
'biomass Thurner'	'mrsos WangMao'	'rlus GEWEX.SRB'
'biomass Tropical'	'nbp GCP'	'rlus WRMC.BSRN'
'biomass US.FOREST'	'nbp Hoffman'	'rns CERESed4.1'
'burntFractionAll GFED4.1S'	'nee FLUXCOM'	'rns CLASS'
'cSoil HWSD'	'nee FLUXNET2015'	'rns FLUXNET2015'
'cSoil NCSCDV22'	'pfext NSIDC'	'rns GEWEX.SRB'
'co2 NOAA.GMD'	'pr CLASS'	'rns WRMC.BSRN'
'dtr CRU4.02'	'pr CMAPv1904'	'rsds CERESed4.1'
'evspsbl GLEAMv3.3a'	'pr FLUXNET2015'	'rsds FLUXNET2015'
'evspsbl MOD16A2'	'pr GPCCv2018'	'rsds GEWEX.SRB'
'evspsbl MODIS'	'pr GPCPv2.3'	'rsds WRMC.BSRN'
'fBNF DaviesBarnard'	'reco FLUXCOM'	'rsns CERESed4.1'
'gpp FLUXCOM'	'reco FLUXNET2015'	'rsns FLUXNET2015'
'gpp FLUXNET2015'	'regions_continental ILAMB'	'rsns GEWEX.SRB'
'gpp WECANN'	'regions_continental IPCC'	'rsns WRMC.BSRN'
'hfdsl CLASS'	'regions_global_land ILAMB'	'rsus CERESed4.1'
'hfls CLASS'	'regions_global_land_no_ant ILAMB'	'rsus FLUXNET2015'
'hfls DOLCE'	'regions_whittaker_biomes ILAMB'	'rsus GEWEX.SRB'
'hfls FLUXCOM'	'rhums CRU4.02'	'rsus WRMC.BSRN'
'hfls FLUXNET2015'	'rhums ERA5'	'swe CanSISE'
'hfls WECANN'	'river_basins Dai'	'tas CRU4.02'
'hfss CLASS'	'rlds CERESed4.1'	'tas FLUXNET2015'
'hfss FLUXCOM'	'rlds FLUXNET2015'	'tasmax CRU4.02'
'hfss FLUXNET2015'	'rlds GEWEX.SRB'	'tasmin CRU4.02'
'hfss WECANN'	'rlds WRMC.BSRN'	'twsa GRACE'
'lai AVH15C1'	'rlns CERESed4.1'	
'lai AVHRR'	'rlns FLUXNET2015'	

BBOOKHAVE

```
In [1]: import intake
   ...: cat = intake.open catalog("https://raw.githubusercontent.com/nocollier/intake-ilamb/main/ilamb.yaml")
In [2]: gpp = cat['gpp | WECANN'].read()
In [3]: qpp
Out[3]:
<xarray.Dataset>
                 (time: 108. nb: 2. lat: 180. lon: 360)
Dimensions:
Coordinates:
                 (time) object 2007-01-16 12:00:00 ... 2015-12-16 12:00:00
 * time
 * lat
                 (lat) float64 89.5 88.5 87.5 86.5 ... -86.5 -87.5 -88.5 -89.5
 * lon
                 (lon) float64 -179.5 -178.5 -177.5 -176.5 ... 177.5 178.5 179.5
Dimensions without coordinates: nb
Data variables:
   time bounds
                 (time, nb) object 2007-01-01 00:00:00 ... 2016-01-01 00:00:00
                 (time, lat, lon) float64 9.969e+36 9.969e+36 ... 9.969e+36
    app
Attributes:
                   Water, Energy, and Carbon with Artificial Neural Networks ...
    title:
    version:
    institutions:
                   Columbia University
    source:
                   Solar Induced Fluorescence (SIF), Air Temperature, Precipi...
   historv:
                   \n2020-11-02: downloaded https://avdc.gsfc.nasa.gov/pub/da...
    references:
                   \n@ARTICLE{Alemohammad2017.\n author = {Alemohammad. S. H...
                   \ntime period: 2007-01 through 2015-11: temporal resolutio...
    comments.
                   CF-1.8
    convention:
```

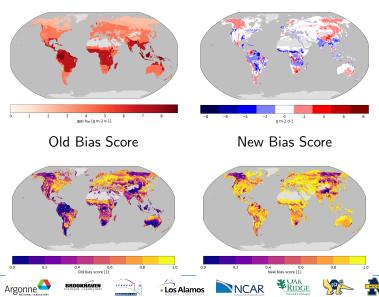
Los Alamos

NCAR

Our normalization technique aims to make errors from different areas of the globe comparable. We could accomplish this by:

- Select a set of biome-like regions (e.g. Whittaker, Koppen) in which errors will be treated as commensurate in order of magnitude.
- ► For each region and across a selection of models (e.g. our CMIP5v6 subset), compute quantiles of the absolute value of the bias, |b(x)|
- Spatial errors are then normalized by some choice of quantile, for example the 98th represented here as b₉₈.
- The bias score $s(\mathbf{x}) = 1 \frac{|b(\mathbf{x})|}{b_{98}}$, restricted to [0, 1]
- The overall scalar score S is a global integral of s(x) (no mass weighting)

os Alamos



CESM2 | gpp | FLUXCOM

RUBISCO

New vs. Old: Which quantile?

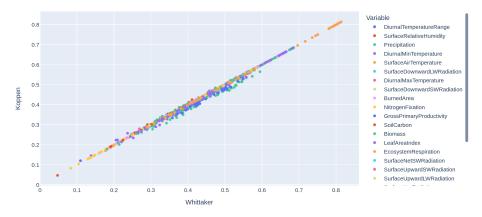
https://www.climatemodeling.org/~nate/score_comparison.html

CMIP5v6: Which quantile?

https:

//www.climatemodeling.org/~nate/score_comparison_CMIP.html

CMIP5v6: Which quantile?



https:

//www.climatemodeling.org/~nate/score_comparison_CMIP.html

CMIP5v6: Which region?

https://www.climatemodeling.org/~nate/region_comparison.html

