

Alpine ecosystems are changing rapidly Niwot Ridge LTER: long-term measurements

Niwot Ridge Representative Hillslope

"The Saddle"

Moist MeadowResource-acquisitive plantsWet Meadow

Dry Meadow

Conservative growth

strategies

- 1. Can CLM reproduce patterns in snow/hydrology, soils, and productivity across a topographically complex landscape?
- 2. How do aspect-driven differences in radiation alter these patterns?
- 3. Does landscape position (aspect and vegetation community) moderate exposure to future climate changes?

Site input data

Saddle precipitation
Tvan meteorology
Ameriflux radiation
Soil properties

Foliar traits

Phenology traits

Plant hydraulics

Model evaluation

Snow depth
Soil temperature
Soil moisture
Productivity
Eddy covariance fluxes

Model validation: Niwot Ridge LTER measurements

Site input data

Saddle precipitation
Tvan meteorology
Ameriflux radiation
Soil properties

Model application

Aspect simulations Anomaly forcing

Decreased snowpack and altered timing of runoff in wet meadow

<u>Δ growing season length (days):</u>

Moist: +8 (south) Wet: +7 (south)

Dry: +10 (south)

South aspects are drier + warmer, with seasonal variation across communities

South aspects are drier + warmer, with seasonal variation across communities

Altered timing of snowmelt and and runoff in future scenario

Dry meadow tracks air temperature change, while snow-covered areas are buffered

Changes in soil moisture driven by aspect and community

Increase in growing season length moderated by aspect

Takeaways and next steps

- CLM with hillslope hydrology can capture differences in soils, productivity, and snow across a topographically complex alpine landscape
- Altered timing of snowmelt and runoff could decouple resource availability from demand during growing season
- Exposure to future climate change is moderated by landscape position in alpine tundra
- Next steps:
 - Applying our modeling framework at lower elevation sites (Niwot forest site, Gordon Gulch, Betasso) to co-develop estimates of climate refugia, informed by stakeholders and public values

Contact me:

katya.jay@colorado.edu

