Improving ozone damage parameterization in CLM5

Jyoti Singh^{1,} Danica Lombardozzi², Ella Walmsley¹, Lili Xia¹, and Alan Robock¹

¹Department of Environmental Sciences, Rutgers University, NJ, USA, ²National Center for Atmospheric Research, Boulder, CO, USA

Plant response to chronic O₃ stress:

- Excess reactive oxygen species (ROS) production
- ROS damages the cell membrane
- Metabolism dysfunction
- Reduced net photosynthesis
- Reduced stomatal conductance
- Reduced carbon assimilation
- Cell death (visible injury)

Ozone damage parameterization in CLM5

- Ozone damage on vegetation in CLM5 is directly and independently influenced by photosynthesis and stomatal conductance based on the cumulative uptake of ozone (CUO) through stomata (Lombardozzi et al., 2015; Lombardozzi et al., 2013; Lawrence, 2019).
- The impact of ozone is estimated for three broad plant functional types (PFTs):
 - 1. Broadleaf trees and shrubs
 - 2. Needleleaf trees and shrubs, and
 - 3. Crops and grasses
- Through this study, our goal is to improve the ozone damage function by analyzing peer-reviewed ozone damage experimental data.
- We gathered ozone damage experiments for various plants, crops, grasses, pulses etc., therefore, another goal is to develop unique ozone damage parameterization for different PFTs (e.g., wheat, rice, soybean, tropical evergreen trees, C4 crops).

Categories and levels describing the data collected from experiments studying ozone effects on photosynthesis and stomatal conductance

e alogely	eategenea						
Plant Type	Crop (81, 903)	Shrub (9, 35)	Grasses (C3 & C4)	Herbaceous	Temperate deciduous tree (84, 775)	Temperate evergreen tree (21, 180)	Tropical evergreen tree (9.48)
Crop Type	Wheat	Sovbean	Rice	Maize	Pulses	Sugarcane	Cotton
	(30, 276)	(13, 209)	(9, 94)	(2, 26)	(8, 202)	(1,8)	(1,4)
Control Air	Ambient (56,716)	Charcoal filtered (166, 1225)					
Exposure System	Greenhouse (9, 125)	Growth chamber (69, 505)	Open-top chamber (92, 935)	Free-air enrichment (52, 382)			
Ozone conc. birs (ppb)	25 to 50 (11, 159)	50-75 (76, 421)	75-100 (74, 751)	100-125 (13, 197)	125-150 (12, 64)	>150 (7, 44)	
Rooting environment	Pot (163, 1316)	Ground (72, 626)					
Vulnerability to Ozone	Low (42, 230)	Med (99, 890)	High (81, 765)				
Data Confidenc e	Low (98, 698)	Med (104, 919)	High (14, 84)				

Category

Categorical Level

• Data from 235 papers (almost 1600 data points) published from 1970 till the present.

• Data points within the associated categorical level: (# of studies, # of data points).

The correlation of **photosynthesis** and **stomatal conductance** to **cumulative uptake of O₃ (CUO)** across **category crop types** for all other categories (1970-2022)

The correlation of **photosynthesis** and **stomatal conductance** to cumulative uptake of O₃ (CUO) across category tree types for all other categories (1970-2022)

Cumulative O₃ uptake (mmol m⁻²)

The correlation of **photosynthesis** and **stomatal conductance** to **O₃ concentration-bins** across **category crop types** for all categories (1970-2022)

Conclusions from the data analysis using Lombardozzi et al. (2013) methodology

- On average all the crops shows reduction in photosynthesis (21%) and stomatal conductance (14%), highest for rice (23% and 24%, respectively).
- On average crops are more sensitive to chronic ozone exposure than trees.
- The correlation between CUO (Cumulative ozone uptake) and change in photosynthesis and conductance is not significant, the correlation improves if predictor variable is Ozone concentrations.
- The experimental data shows different crops and trees are affected differently and hence should have unique ozone damage function in CLM5.
- CUO is integrated O₂ flux into leaves through time and is an indicator of ozone uptake but taking Ozone concentration into account while deriving plant damage is crucial.
- CUO calculation is directly proportional to stomatal conductance (Gs) of the plant, ozone concentration and total exposure time.
- However, a plant can have similar CUO values for various condition, e.g.,
 - low ozone concentration, for a long duration high ozone concentration, for a shorter duration 1.
 - 2.
 - 3. high ozone concentration, for a longer duration but, have low Gs

Analyzing the properties of the ozone experimental data for category crop:

- 1. Almost 95% variance in the data can be explained by 3 principal components (PC).
- 2. However, all predictor variables (CUO ,G_s, ozone concentration and total exposure time) have significance contribution in each PC with varying weight.
- 3. This might be the reason that no significant correlation of CUO alone could not be seen with change in photosynthesis or stomatal conductance.

Verifying if the different weight of variables in different PCs are due to different crops categories:

- The ozone experimental data for wheat also have different contribution of variables to each PC.
- This strongly indicates **CUO** alone can not explain the impact of chronic ozone exposure to plants.
- This may be because the experimental data is from different climates, crop varieties and experimental setting.

Incorporating multiple predictor variables other than CUO to prediction of change in photosynthesis and stomatal conductance under chronic ozone exposure

Regression for change in photosynthesis due to chronic ozone exposure in Rice

Regression for change in conductance due to chronic ozone exposure in Rice

Takeaways

CUO alone does not explain ozone damage on plants CUO combined with control Gs, O_{3,} and time explain the ozone damage significantly The predictor variables interact differently for different crop types

Next Step:

- Adding and testing the new and improved ozone parameterizations in CLM5.
- Adding the parameterizations for new PFTs (wheat, rice, soybean, tropical evergreen trees, and C4 crops) in CLM5.

Thank You

Appendices

Impact of ozone on photosynthesis in CLM5 Lombardozzi et al. (2013)

Charcoal-filtered air, medium or high confidence data: photosynthesis	n	Mean	p value	Regression	r^2	p value
All data	345	82.1	< 0.001*	$84.34 - 0.10^*x$	0.02	0.01*
Plant type						
Crop	134	77.22	0.05*	$80.21 - 0.09^*x$	0.08	< 0.001*
Evergreen shrub	0	NA	NA	NA	NA	NA
Grasses (C_3 and C_4)	8	80.18	0.87	NS	0.27	0.18
Herbaceous	41	83.27	0.8	NS	0.04	0.2
Temperate deciduous tree	113	87.52	0.22	NS	0.003	0.58
Temperate evergreen tree	47	83.9	0.66	NS	0.08	0.06
Tropical tree	2	44.13	0.19	NA	NA	NA
Plant age (years)						
<1	234	79.71	0.29	$82.55 - 0.11^*x$	0.06	< 0.001*
1-5	95	89.14	0.18	NS	0.002	0.64
> 5	7	81.41	0.93	NS	0.01	0.8
Exposure system						
Greenhouse	24	76.38	0.08	NS	0.08	0.18
Branch chamber	18	88.68	0.07	NS	0.12	0.16
Growth chamber	157	83.54	0.69	NS	0.00002	0.96
Open-top chamber	146	80.68	0.59	$84.48 - 0.11^*x$	0.08	< 0.001*
Free-air enrichment	NA	NA	NA	NA	NA	NA
Rooting Environment						
Pot	271	81.64	0.87	$83.55 - 0.09^*x$	0.01	0.05*
Ground	65	85.63	0.2	$91.74 - 0.19^*x$	0.17	$< 0.001^{*}$
Vulnerability						
Low	58	86.19	0.34	NS	0.01	0.42
High	135	81.52	0.88	NS	0.01	0.16

OzoneMod.F90

<pre>integer, parameter :: stress_method_lombardozzi2015 = 1 integer, parameter :: stress_method_falk = 2</pre>
! TODD(wjs, 2014-09-29) The following parameters should eventually be moved to the ! params file. Parameters differentiated on veg type should be put on the params file ! with a pft dimension.
<pre>! 03:h2o resistance ratio defined by Sitch et al. 2007 real(r8), parameter :: ko3 = 1.67_r8</pre>
! LAI threshold for LAIs that asymptote and don't reach 0 real(r8), parameter :: lai_thresh = 0.5_r8
<pre>! threshold below which o3flux is set to 0 (nmol m~-2 s^-1) real(r8), parameter :: o3_flux_threshold = 0.8_r8</pre>
<pre>! o3 intercepts and slopes for photosynthesis real(r8), parameter :: needleleafPhotoSlope = 0.8390_r8 ! units = unitless real(r8), parameter :: broadleafPhotoSlope = 0r8 ! units = per mmol m^-2 real(r8), parameter :: broadleafPhotoSlope = 0r8 ! units = unitless real(r8), parameter :: broadleafPhotoSlope = 0r8 ! units = per mmol m^-2 real(r8), parameter :: nonwoodyPhotoSlope = 0r8 ! units = unitless real(r8), parameter :: nonwoodyPhotoSlope = -0.0009_r8 ! units = per mmol m^-2</pre>
<pre>! o3 intercepts and slopes for conductance real(r8), parameter :: needleleafCondInt = 0.7823_r8 ! units = unitless real(r8), parameter :: broadleafCondSlope = 0.0048_r8 ! units = per mmol m^-2 real(r8), parameter :: broadleafCondSlope = 0.9135_r8 ! units = unitless real(r8), parameter :: broadleafCondSlope = 0r8 ! units = per mmol m^-2 real(r8), parameter :: nonwoodyCondSlope = 0r8 ! units = unitless real(r8), parameter :: nonwoodyCondSlope = 0r8 ! units = unitless</pre>
<pre>! Data is currently only available for broadleaf species (Dec 2020) ! o3 intercepts and slopes for Jmax03/Jmax0 real(r6), parameter :: needleleafJmaxInt = 1r8 ! units = unitless real(r6), parameter :: broadleafJmaxInt = 1r8 ! units = per mmol m^-2 real(r6), parameter :: broadleafJmaxInt = 1r8 ! units = unitless real(r6), parameter :: broadleafJmaxInt = 1r8 ! units = per mmol m^-2 real(r8), parameter :: broadleafJmaxInt = 1r8 ! units = per mmol m^-2 real(r8), parameter :: nonwoodyJmaxInt = 1r8 ! units = unitless real(r8), parameter :: nonwoodyJmaxInt = 1r8 ! units = unitless</pre>

Impact of ozone on stomatal conductance in CLM5 Lombardozzi et al. (2013)

Charcoal-filtered air, medium or high confidence Data: Condutance	n	Mean	p value		Regression	r^2	p value	OzoneMod.F90
All data	393	84.44	$< 0.001^{*}$	NS	0.0006	0.63	84 85	<pre>integer, parameter :: stress_method_lombardozzi2015 = 1 integer, parameter :: stress_method_falk = 2</pre>
Plant type							87	! TODO(wjs, 2014-09-29) The following parameters should eventually be moved to the ! params file. Parameters differentiated on veg type should be put on the params file
Crop	136	75.11	0.007*	NS	0.005	0.43	90	! with a pit dimension.
Evergreen shrub	0	NA	NA	NA	NA	NA	91	<pre>! 03:h20 resistance ratio defined by Sitch et al. 200/ real(r8), parameter :: ko3 = 1.67_r8</pre>
Grasses (C_3 and C_4)	8	89.15	0.53	NS	0.2	0.27	93 94	! LAI threshold for LAIs that asymptote and don't reach 0
Herbaceous	41	88.19	0.37	NS	0.02	0.33	95 96	<pre>real(r8), parameter :: lai_thresh = 0.5_r8</pre>
Temperate deciduous tree	153	91.25	0.02*	NS	0.0001	0.9	97	! threshold below which o3flux is set to 0 (nmol m^-2 s^-1)
Temperate evergreen tree	53	86.45	0.54	$78.23 + 0.48^*x$	0.32	<0.001*	99	
Tropical tree	2	48.3	0.17	NA	NA	NA	100	<pre>real(r8), parameter :: needleleafPhotoInt = 0.8390_r8 ! units = unitless</pre>
Plant age (years)							102 103 104 105	real(r8), parameter :: needleafPhotoSlope = 0r8 ! units = per mol m ⁻² real(r8), parameter :: broadleafPhotoSlope = 0r8 ! units = unitss real(r8), parameter :: broadleafPhotoSlope = 0r8 ! units = per mol m ⁻² cal(r6), parameter :: broadleafPhotoSlope = 0r8 ! units = per mol m ⁻²
<1	236	82.02	0.36	NS	0.00001	0.93	105	real(r8), parameter :: nonwoodyPhotoSlope = -0.0009_r8 ! units = unitess
1-5	133	89.9	0.08	$84.95 + 0.33^*x$	0.05	0.009*	107	! o3 intercepts and slopes for conductance
> 5	15	79.56	0.6	$108.37 - 3.14^*x$	0.34	0.02*	109	<pre>real(r8), parameter :: needleleafCondInt = 0.7823_r8 ! units = unitless real(r8), parameter :: needleleafCondSlope = 0.0048_r8 ! units = per mmol m^-2</pre>
Exposure system						200000000	111 112 113	real(r8), parameter :: broadleafCondInt = 0.9125_r8 ! units = unitless real(r8), parameter :: broadleafCondStope = 0r8 ! units = per mmol m^-2 real(r8), parameter :: nonwoodyCondInt = 0.7511_r8 ! units = unitless real(r8), parameter :: nonwoodyCondInt = 0.7511_r8 ! units = unitless
Greenhouse	30	89.1	0.31	NS	0.02	0.43	115	<pre>Presc(ro), parameter :. nonwoodycond.cope = 010 . drits = per nmot m -2 1. Date is superstill superintiable for boardier service (Dec 2020)</pre>
Branch chamber	18	90.97	0.05*	NS	0.17	0.09	116	! o3 intercepts and slopes for Jmax03/Jmax0
Growth chamber	163	82.69	0.62	$74.25 + 0.57^*x$	0.12	< 0.001*	118	<pre>real(r8), parameter :: needleleafJmaxInt = 1r8</pre>
Open-top chamber	182	84.59	0.95	$86.69 - 0.07^*x$	0.03	0.02*	120 121	<pre>real(r8), parameter :: broadleafJmaxInt = 1r8</pre>
Free-air enrichment	NA	NA	NA	NA	NA	NA	122 123	<pre>real(r8), parameter :: nonwoodyJmaxInt = 1r8 ! units = unitless real(r8), parameter :: nonwoodyJmaxSlope = 0r8 ! units = per mmol m^-2</pre>
Rooting environment							124	
Pot	310	84.14	0.9	NS	0.0008	0.61		
Ground	74	86.8	0.39	NS	0.004	0.61		
Vulnerability								
Low	106	91.11	0.13	$78.24 + 1.13^*x$	0.23	< 0.001*		
High	135	79.14	0.04*	NS	0.004	0.49		

Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	35.916	3.899	9.2114	4.5635e-19
x1	0.7571	0.069149	10.949	1.0932e-25
x2	-0.022521	0.0051473	-4.3754	1.4154e-05
х3	-0.60271	0.034128	-17.661	3.8364e-57
x4	-0.052714	0.0046008	-11.458	8.9825e-28

Number of observations: 644, Error degrees of freedom: 639 Root Mean Squared Error: 17.2 R-squared: 0.38, Adjusted R-Squared: 0.376 F-statistic vs. constant model: 97.7, p-value = 7.34e-65

Linear regression model (robust fit): y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	79.447	3.4774	22.847	6.583e-85
x1	1.9443	0.061671	31.527	2.6104e-132
x2	-0.11146	0.0045906	-24.279	9.1678e-93
x3	-0.73252	0.030437	-24.067	1.3452e-91
x4	-0.090727	0.0041032	-22.111	6.8613e-81

Number of observations: 644, Error degrees of freedom: 639 Root Mean Squared Error: 15.3 R-squared: 0.631, Adjusted R-Squared: 0.629 F-statistic vs. constant model: 274, p-value = 7.03e-137

Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	76.377	18.765	4.0702	0.00012032
x1	0.45913	0.084145	5.4564	6.7214e-07
x2	-0.26435	0.042701	-6.1908	3.4436e-08
x3	-0.74932	0.23411	-3.2007	0.0020512
x4	-0.0074396	0.0018736	-3.9707	0.00016967

Number of observations: 76, Error degrees of freedom: 71 Root Mean Squared Error: 22.4 R-squared: 0.391, Adjusted R-Squared: 0.357 F-statistic vs. constant model: 11.4, p-value = 3.37e-07 Linear regression model (robust fit): y ~ 1 + x1 + x2 + x3 + x4

Estimated Coeffic	ients:				
	Estimate	SE	tStat	pValue	
(Intercept)	122.64	20.046	6.1179	4.647e-08	
x1	0.69696	0.08989	7.7535	4.7888e-11	
x2	-0.43097	0.045616	-9.4479	3.5107e-14	
x3	-1.391	0.2501	-5.5618	4.4192e-07	
x4	-0.0093298	0.0020015	-4.6613	1.4317e-05	

Number of observations: 76, Error degrees of freedom: 71 Root Mean Squared Error: 24 R-squared: 0.627, Adjusted R-Squared: 0.606 F-statistic vs. constant model: 29.8, p-value = 1.5e-14

Regression for change in conductance due to chronic ozone exposure in Rice

Regression for change in photosynthesis due to chronic ozone exposure in Rice

