FATES round-up and update

Charlie Koven, Rosie Fisher, Ryan Knox, Jacquelyn Shuman, Adrianna Foster, Greg Lemieux and FATES team and community

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Opportunities

Can you add to FATES or collaborate?

FATES as primary vegetation model

FATES complexity modes

Satellite Phenology

One cohort and patch **Observed PFT LAI** *No disturbance, growth, or mortality*

No Competition

PFTs with fixed area Growth & disturbance Fixed biogeography

Prescribed Biogeography

Growth, disturbance, and competition, but only where PFT defined

LICAR

Full FATES

Growth, disturbance, and competition everywhere

NCAR (adapted from Charlie Koven)

FATES priorities

Land Use Land Cover Change

- Dynamic land units
- LUH2 data to FATES
- Crops separate from Nat Veg
- Forest management

Nutrients

• Implement CLM connections

Fire

• Fire emissions

MEGAN and Dry Dep

- Functional in FATES-SP
- Custom PFT and emissions

Calibration

- ILAMB testing
- Calibration Cascade
- PPE scripts and testing
- Site- & Regional-level

FATES-SP

- Reduce output
- LAI streams

Infrastructure

- FATES compsets
- Coupling
- Restart files
- NEON (functional)
- HH (functional)

FATES priorities

Land Use Land Cover Change

- Dynamic land units
- LUH2 data to FATES
- Crops separate from Nat Veg
- Forest management (Joshua R.)

Nutrients (Ryan K.)

• Implement CLM connections

Fire (Xiulin G., Jackie S.)

• Fire emissions

MEGAN and Dry Dep

- Functional in FATES-SP
- Custom PFT and emissions

Calibration

- ILAMB testing (Adrianna F.)
- Calibration Cascade (Marcos L., Jessica N.)
- PPE scripts and testing
- Site- & Regional-level (Polly B.)

FATES-SP (Rosie F.)

- Reduce output
- LAI streams

Infrastructure (Eva L. & Lasse K.)

- FATES compsets
- Coupling
- Restart files
- NEON (functional) (Adrianna F.)
- HH (functional)

FATES ILAMB Testing

New parameter file from Jennifer Holm (api 24.1 vs. 25)

 Differences: DBH max height; SLA_{top}, V_{cmax}, freeze mortality tolerance, recruitment height, reproduction minimum DBH, wood density

Adrianna Foster, NCAR

14 PFTs. GSWP3 1965-2014 Years: SP = 100(50, 50); NoC = 300(250,50); FBG= 150(100, 50)

param)

new

bio.

old

bio

new param param)

comp

old param param)

old param)

FATES ILAMB Testing

New parameter file from Jennifer Holm (api 24.1 vs. 25)

Mean

- Differences: DBH max height; SLA_{top} , V_{cmax} , freeze mortality tolerance, recruitment height, reproduction minimum DBH, wood density

GPP

		, icuit			-
Benchmark	[:]	114.	Bias	RMSE	Score
CTSM5.1_FATES_fb_new	[:]	199.	0.338	0.386	0.544
CTSM5.1_FATES_fb_old	[:]	215.	0.298	0.390	0.531
CTSM5.1_FATES_nc_new	[:]	149.	0.385	0.433	0.568
CTSM5.1_FATES_nc_old	[:]	157.	0.363	0.432	0.562
CTSM5.1_FATES_SP_new	[:]	148.	0.474	0.524	0.656
CTSM5.1_FATES_SP_old	[:]	148.	0.473	0.523	0.655

	FAT	FAT	FAT	FAT	FAT	FAT
Ecosystem and Carbon Cycle						
Biomass						
Gross Primary Productivity						
Ecosystem Respiration						
Hydrology Cycle						
Evapotranspiration						
Latent Heat						
Sensible Heat						
Radiation and Energy Cycle						
Albedo						
Surface Upward SW Radiation						
Surface Net SW Radiation						
Surface Upward LW Radiation						
Surface Net LW Radiation						
Surface Net Radiation						

ES fixed bio. (new param)

comp (new param ES fixed bio. (old param)

ES no

ES no comp (old param) ES-SP (new param) ES-SP (old param)

Relative Scale

Worse Value Better Value

NCAR Adrianna Foster, NCAR

FATES global calibration across complexity modes

FATES single-point simulations at **NEON** sites

Parameter calibration & uncertainty using Bayesian statistical methods

Leveraging NEON aerial LiDAR and hyperspectral imagery for initializing with current forest conditions

Comparison to NEON observations

Adrianna Foster, NCAR

You can now run FATES at 45 NEON sites!

Please test FATES and let us know how we can improve!

Initial conditions files planned for the future

Adrianna Foster, NCAR

Command to create a job:

./create_newcase --case \$job_name --res CLM_USRDAT --compset I1PtCIm51Fates --user-mods-dir CTSM/cime_config/usermods_dirs/NEON/FATES/\${NEON_SITE}

> Check out CTSM PR #1932 for more information https://github.com/ESCOMP/CTSM/pull/1932

FATES impact of fuel drying and interactive fire

FATES, high dry

FATES, low dry

Difference between high fuel drying and low fuel drying (high dry - low dry)

Jacquelyn Shuman, NCAR

- 200

- 150

- 100

50

- 0

-50

-100

-150

-200

-2

FATES tropical application

Fire effects (fire intensity) create biogeography Drying of fine fuels important Anthropogenic (LULCC) impacts are essential (not in this version)

Jacquelyn Shuman, NCAR

Importance of climate-fire-vegetation interactions

FATES code and information

https://github.com/NGEET/fates/wiki

Acknowledgment

A portion of this research was supported as part of the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Thank You! Questions?

Contact details: Jacquelyn Shuman jkshuman@ucar.edu

FATES impact of fuel drying and interactive fire

drying = High

200

Jacquelyn Shuman, NCAR

FATES ILAMB Testing

New parameter file from Jennifer Holm (api 24.1 vs. 25)

Differences: DBH max height; SLA_{top}, V_{cmax}, freeze mortality tolerance, recruitment height, reproduction minimum DBH, wood density

GPP		Mean			
Benchmark	[:]	114	Bias	RMSE	Score
CTSM5.1_FATES_nc_new	[-]	149	0.385	0.433	0.568
CTSM5.1_FATES_nc_old	[-]	157	0.363	0.432	0.562
CTSM5.1_FATES_SP_new	[-]	148	0.474	0.524	0.656
CTSM5.1_FATES_SP_old	[-]	148	0.473	0.523	0.655

NCAR Adrianna Foster, NCAR

	Ē	Ē	Ē	Ē
Ecosystem and Carbon Cycle				
Biomass				
Gross Primary Productivity				
Ecosystem Respiration				
Hydrology Cycle				
Evapotranspiration				
Latent Heat				
Sensible Heat				
Radiation and Energy Cycle				
Albedo			-	
Surface Upward SW Radiation				
Surface Net SW Radiation				
Surface Upward LW Radiation				
Surface Net LW Radiation				
Surface Net Radiation				

comp (new param)

ATES no

param) / param)

(old p (new

ATES-SP ATES-SP ATES no comp (old param)

Calibration cascade

Photosynthesis, leaf, hydrology parameters, soil parameters

No Competition

Allometry and allocation parameters, growth & mortality parameters

Fixed Biogeography

Environmental sensitivity, competition for resources

Adrianna Foster – afoster@ucar.edu (adapted from C Koven)