Land Model / Biogeochemistry Working Group Meeting 2023

Improving the hydrological performance of CTSM through parameter optimization and large-sample watershed modeling

Guoqiang Tang, Andy Wood, Sean Swenson CGD/TSS, NCAR

NCAR

ICAR

Feb 6, 2023

Using a model to represent real-world hydrology

- Model representations require choices of model structure and physics (parameterizations) and depend on specification of inputs: forcings and parameter values.
- These modeling choices and input specifications are inherently uncertain ... a long-standing challenge

Different communities approach this challenge differently

Applied ESM-based modeling seeks both realism AND performance

A number of new water security related projects are exploring the use of CTSM as a process/physics advance over more common 'applied-hydrology' models

- climate change studies land modeling uncertainty is a key component (Lehner et al., 2019)
- flood, drought, and hydrologic prediction applications supporting water management agency missions

This presentation describes initial work supporting a climate change project sponsored by USACE*

Overarching goal

• develop land models that can represent current hydrology (performance) as well as climate change impacts on hydrology (fidelity) in both coupled and offline context

Immediate goal

 develop CTSM configurations and parameter sets that perform well for hydrology – and with robust climate-hydrology sensitivities

First steps

- use common parameter estimation approaches from applied hydrological modeling for CTSM
- develop a large-sample small-watershed CTSM implementation for investigating parameter estimation and configuration strategies (US-focused, for now)

*US Army Corps of Engineers (USACE) – Climate Preparedness and Resilience Program

Hydrologic model parameter estimation

- A decades-old practice in applied hydrology with many algorithms and much theory (geo-informatics)
- Now there are multiple available multi-method packages for parameter sensitivity assessment and optimization ... as well as individual researcher's methods – e.g.:

https://dakota.sandia.gov/

OSTRICH - Optimization Software Toolkit

OSTRICH, developed by L. Shawn Matott, is a model-independent multi-algorithm paralell-friendly optimization and parameter estimation tool that implements numerous model-independent optmization and calibration (parameter estimation) algorithms,

http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html

MO-ASMO

Water Resources Research

Research Article 🖻 Open Access 💿 🗊 🗐 😒

Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models

Wei Gong 🔀, Qingyun Duan, Jianduo Li, Chen Wang, Zhenhua Di, Aizhong Ye, Chiyuan Miao, Yongjiu Dai

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR018230

e.g., MCMC

David Luengo ⊡, Luca Martino, Mónica Bugallo, Víctor Elvira & Simo Sárkkä EURASIP Journal on Advances in Signal Processing **2020**, Article number: 25 (2020) | <u>Cite this article</u>

Welcome to SPOTPY

A Statistical Parameter Optimization Tool for Python

https://spotpy.readthedocs.io/en/latest/

Model Independent Parameter Estimation & Uncertainty Analysis https://pesthomepage.org/

Shuffled Complex Evolution (SCE-UA) Method Version 1.0.0.0 (420 KB) by Qingyun Duan An efficient and robuse global optimization method.

Duan et al, WRR, 1992

- Calibration of the CTSM model in Alaska and the Yukon River Basins
- Used MO-ASMO algorithm (surrogate modeling)
- The mean skill¹ of daily streamflow increased from 0.43 to 0.63
- See **Y. Cheng** presentation in this session for details

¹skill ~ Kling-Gupta Efficiency (KGE) score

Justification for Step #2: 1. <u>PPE</u> used different configuration than we did (Hillslope hydrology was not represented in <u>PPE</u>); 2. PPE experiment did not include the routing process; 3. Computationally expensive to tune 40 params

A CTSM Parameter Optimization Framework

A CTSM Parameter Optimization Framework

The parameters are selected based on PPE parameter table and manual identification of key hydrological processes. The list is not parameter specific.

1	Parameter	Default	Lower	Upper	Source	Method	Туре	Binding
2	vcmaxha	72000	20000	250000	Param	Multiplicative	Hydrology	None
3	om_frac_sf	1	0.25	2	Param	Multiplicative	Hydrology	None
4	slopebeta	-3	-10	-0.5	Param	Multiplicative	Hydrology	None
5	fff	0.5	0.01	10	Param	Multiplicative	Hydrology	None
6	e_ice	6	1	8	Param	Multiplicative	Hydrology	None
7	liq_canopy_storage_scalar	0.1	0.025	4	Param	Multiplicative	Hydrology	None
8	baseflow_scalar	Default	0.0005	0.1	Namelist	Multiplicative	Hydrology	None
9	FMAX	Default	0.2	0.8	Surfdata	Multiplicative	Hydrology	None
10	hksat_sf	Default	0.9	9	Param	Multiplicative	Hydrology	None
11	krmax	1.22E-09	5.83E-11	6.90E-09	Param	Multiplicative	Plant hydrau	None
12	d_max	15	5	100	Param	Multiplicative	Stomatal res	None
13	frac_sat_soil_dsl_init	0.8	0.25	2	Param	Multiplicative	Stomatal res	None
14	cv	0.01	0.0025	0.04	Param	Multiplicative	Stomatal res	None
15	a_coef	0.13	0.05	0.15	Param	Multiplicative	Stomatal res	None
16	upplim_destruct_metamorph	175	10	500	Namelist	Multiplicative	Snow Proces	None
17	n_melt_coef	200	25	600	Param	Multiplicative	Snow Proces	None
18	medlynintercept	100	1	20000	Param	Multiplicative	Stomatal res	None
19	precip_repartition_nonglc_all_rain_t	2	0	4	Namelist	Additive	Hydrology	precip_repar

- Parameters in parameter netcdf, surface data netcdf, and namelist text files are suppoted
- Multiplicative and additive factors are supported
- Binding parameters will use the same factors.
- Default and Type are optional.

The Optimization Software Toolkit for Research Involving Computational Heuristics (**OSTRICH**) is a model-independent program that automates the processes of model calibration and design optimization without requiring the user to write any additional software.

Global search algorithms implemented within OSTRICH

Acronym	Algorithm	# Objectives	Serial?*	Parallel?	Warm Start?	Pre-Emption?	Parameter Correction?	List of Initial Parameters?	Math and Stats?	Line Search?	Reference or Contact Information
APPSO	Asynchronous Parallel Particle Swarm Optimization	1								Ĩ.	(Venter and Sobieszczanski-Sobieski, 2006)
BEERS	Balanced Exploration-Exploitation Random Search	1									lsmatott@buffalo.edu
BGA	Binary-coded Genetic Algorithm	1					9 8	0.00			(Yoon and Shoemaker, 1999)
CSA	Combinatorial Simulated Annealing	1									(Kirkpatrick et al., 1983)
DDDS	Discrete DDS	1	ļ.		ļ.			1	1	<u></u>	(Tolson et al., 2009)
DDS	Dynamically Dimensioned Search	1					2				(Tolson and Shoemaker, 2007)
PDDS	Asynchronous Parallel DDS	1									(Tolson et al., 2014)
PSO	Particle Swarm Optimization	1							×		(Beielstein et al., 2002; Kennedy et al., 2001; Kennedy and Eberhart, 1995)
RGA	Real-coded Genetic Algorithm	1							4		(Yoon and Shoemaker, 2001)
SA	Simulated Annealing	1									(Dougherty and Marryott, 1991; Marryott et al., 1993)
SCE	Shuffled Complex Evolution	1									(Duan et al., 1993; Duan et al., 1992)
SMPLR	Sampling Algorithm (Big Bang - Big Crunch)	1	ĵ.	1	ĵ.		Ĵ.			Ĵ.	(Erol and Eksin, 2006)
VSA	Vanderbilt-Louie Simulated Annealing	1									(Vanderbilt and Louie, 1984)

https://usbr.github.io/ostrich

Matott et al., 2011, 2012

A CTSM Parameter Optimization Framework

. . .

. . .

ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc

3. Forcing subset Get raw forcing file list Subset using mesh domain Time merge Update datm stream file ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

Raw NLDAS forcing

Subsetting

- Effectively reduce time cost for regional studies

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-1984.nc subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1985-1989.nc subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1990-1994.nc

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2015-2018.nc

Time merging (month to X-years)

- Easier file management
- Avoid excess file numbers in some systems

Benefits of large-sample watershed modeling

- **Improved accuracy**: Broad understanding of the model's performance, limitations and variability
- **Statistical robustness**: Increase the statistical robustness of the simulation and calibration results
- **Regional variations**: To identify and account for regional variations in model parameters and to test the generalizability of the model across different basins.
- **Improved understanding**: Reveal important relationships and dependencies between the model parameters, leading to a deeper understanding of the underlying hydrological processes.
- Better representation: A better representation of the diversity and variability of natural systems, enabling the assessment of the impacts of changes in a more comprehensive manner.

Gupta et al., Large-sample hydrology: a need to balance depth with breadth. HESS. 2014

Large-sample watershed modeling

CAMELS (Catchment Attributes and Meteorology for Large-sample Studies

- A comprehensive set of catchment attributes, meteorological variables, streamflow observations, and model results for 671 US catchments
- Widely used in hydrology research to develop and evaluate hydrological models, variability and predictability
- Has been a central dataset in the global rise of machine learning in hydrology
- Has been extended in many countries by independent efforts
- Was originally developed in NCAR RAL to study streamflow predictability and model complexity

Newman et al., 2015

Large-sample watershed modeling using CAMELS

Blue: 671 CAMELS basins

Red: 10% randomly selected basins for this presentation.

- Each basin is simplified as a mesh grid to facilitate large-sample modeling.
- For nested basins (i.e., upstream VS downstream), the split strategy is adopted to subtract upstream basins from downstream basins because mesh grids cannot overlap.
- All the 671 basins of CAMELS will be used in the final experiment.

Large-sample watershed modeling using CAMELS

For the calibration period:

Computation

- 1 CPU and 12 hours are allocated to each basin
- ~40 trials per basin, while normally hundreds of trials are needed to achieve ideal calibration

Results

- KGE' increases in 66 out of 67 basins after calibration.
- The median KGE⁺ increases from -0.01 to 0.17 after calibration.
- The median/mean of "Best Original" KGE' is 0.15/0.53.

Modified Kling-Gupta Efficiency (KGE') $-\infty$ (worst) to 1 (best)

Large-sample watershed modeling using CAMELS

Daily flow Monthly flow 20.0 Obs ---- Obs ---- Simu Best — Simu Best 4 17.5 - Simu Orignal Simu Orignal (T-5 E) 12.5 Streamflow (m3 s-1) Streamflow 10.0 7.5 5.0 1 2.5 0.0 1996-01 1996-07 1998.01 1995-01 1995-07 1998-07 1997-01 1997-07 2 10 12 8 6

Example-1: 02465493 KGE': 0.43 -> 0.64

Example-2: 02427250 KGE': 0.48 -> 0.76

A streamlined CTSM calibration workflow and hydrology 'testbed':

- This new CTSM calibration capability development supports a larger project to assess the robustness of different hydrological model configurations for projecting forced responses to climate change.
- The CAMELS-CTSM implementation offers a useful and efficient testbed for evaluating alternative CTSM model configurations and development choices.
- The parameter estimation workflow will enhance the local performance of the CTSM hydrology component and yield insights into regional to continental parameter estimation strategies.

Next steps:

- Future calibration development efforts include:
 - improving parallel computation
 - multi objective calibration
 - further parameter refinement
 - · distributed domains
 - the use of river routing
 - regionalization to uncalibrated basins
- We will also assess different structural configuration options and the hillslope parameterization

Thank you! guoqiang@ucar.edu