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Using a model to represent real-world hydrology

* Model representations require choices of model structure and physics (parameterizations) and depend
on specification of inputs: forcings and parameter values.
+ These modeling choices and input specifications are inherently uncertain ... a long-standing challenge
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Different communities approach this challenge differently

The earth system modeling community The applied hydrological modeling community

advances model fidelity through: advances model performance through:

« improving observational analyses to better * improving observational analyses to better estimate
estimate inputs (forcings, parameters, structure) inputs (forcings, parameters)

» using observational studies to refine * optimization of model parameters and structure

parameterizations (physics)
» increasing complexity of process represen

given the existing parameterizations
ovement of physics -- but only as needed

* philosophy: we can eventually reg This project brings an ve will never represent everything but
gverything through better obseg applied hydrology mindset Umize what we don’t know
improvement to the ESM development
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Applied ESM-based modeling seeks both realism AND performance

A number of new water security related projects are exploring the use of CTSM as a process/physics
advance over more common ‘applied-hydrology’ models

+ climate change studies — land modeling uncertainty is a key component (Lehner et al., 2019)

+ flood, drought, and hydrologic prediction applications — supporting water management agency missions

This presentation describes initial work supporting a climate change project sponsored by USACE*

Qverarching goal
» develop land models that can represent current hydrology (performance) as well as climate change

impacts on hydrology (fidelity) in both coupled and offline context

Immediate goal
» develop CTSM configurations and parameter sets that perform well for hydrology — and with robust

climate-hydrology sensitivities

First steps
» use common parameter estimation approaches from applied hydrological modeling for CTSM

 develop a large-sample small-watershed CTSM implementation for investigating parameter
estimation and configuration strategies (US-focused, for now)

*US Army Corps of Engineers (USACE) — Climate Preparedness and Resilience Program



Hydrologic model parameter estimation

» A decades-old practice in applied hydrology with many algorithms and much theory (geo-informatics)
* Now there are multiple available multi-method packages for parameter sensitivity assessment and
optimization ... as well as individual researcher’s methods — e.g.:

Mathematical and |

statistical methods to help \
scientists and engineel )}>
. DAKOTA

OSTRICH - Optimization Software Toolkit

OSTRICH, developed by L. Shawn Matott, is a model-independent multi-algorithm
paralell-friendly optimization and parameter estimation tool that implements numerous
model-independent optmization and calibration (parameter estimation) algorithms,

http://lwww.civil.uwaterloo.ca/envmodelling/Ostrich.html

ps://dakota.sandia.gov/

MO-ASMO
Water Resources Research’ Welcome to SPOTPY SP&aTPY
: A Statistical Parameter Optimization Tool for Python
Rescorchjinice | B Qpemtonns | © D © & https://spotpy.readtheiiocs.|o/en/|atest/

Multiobjective adaptive surrogate modeling-based
optimization for parameter estimation of large, complex

geophysical models
Wei Gong ¥4, Qingyun Duan, Jianduo Li, Chen Wang, Zhenhua Di, Aizhong Ye, Chiyuan Miao,
Yongjiu Dai

https://agupubs.onlinelibrary.wiley.com/doi/full/10.7002/201T5WR018230 Model Independent Parameter Estimation & Uncertainty Analysis

ttps-/pesthomepage-orgt

Review | Open Access | Published: 29 May 2020
A survey of Monte Carlo methods for — }
parameter estimation 1 e B X Shuffled Complex Evolution (SCE-UA) Method
e-g-, MCMC SR l ! TR Version 1.0.0.0 (420 KB) by Qingyun Duan

David Luengo 4, Luca Martino, Mdnica Bugallo, Victor Elvira & Simo Sarkka

An efficient and robuse global optimization method.

Duan et al, WRR, 1992

EURASIP Journal on Advances in Signal Processing 2020, Article number: 25 . w7 IR
(2020) | Cite this article N ‘ l -~‘




Prior research with CTSM parameter optimization

 Calibration of the CTSM model [ ==- === T~~~ -~~~ ~-<-~-~-~---~--~-—-~-~-~-——<--~-—-—--~==--=--=---= I
in Alaska and the Yukon River
Basins

Downscaling High-resolution Soil Sub-grid
Meteorological forcing texture/Organic matter variability

(surrogate modeling)
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« The mean skill" of daily

streamflow increased from 0.43 = m = m e e m e e e e oo |
to 0.63 I :

|
1| 1. Select sensitive 2. Simulating the 3. Optimizing 4. Parameter Optimized I
e See. Cheng presentation in | | parameters using response surface parameters regionalization afz;rr::tgrs !
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IS session 1or aetails 1| Parameter functions to northern slope Level IlI) and Yukon [
: Ensemble (PPE) parameters and southern River Basin [
1 experiment areas 7 I
— . . 1 Optimized params for I
skill ~ Kling-Gupta Efficiency (KGE) score I southern and northern |
i 40 params 14 params subbasins separately |
I
I

! Justification for Step #2: 1. PPE used different configuration than we did (Hillslope hydrology was not represented in PPE); 2. PPE
I experiment did not include the routing process; 3. Computationally expensive to tune 40 params

Cheng et al., 2023



A CTSM Parameter Optimization Framework

0. Data preparation

« Dataset dependent

Parameter list Basin files Reference datasets

| 1. Build model ; | 2. Calib. setting ; | 3. Forcing subset ; | 4.Spinup ;
I parallel or clone ; I Fold I I G I I I
1 I 1 older I 1 et raw I 1 : : |
I I I structure i1 | forcingfilelist | 1 1 | Decideperiod | * Pyth(_)n o
! | Create case : : I ; : I ; : L : » Configuration file
I I I | Checkparams | 1 j ! Subsetusing | I Run model I * Automatic workflow
1 1 1 1 1 mesh domain 1 1 —
| Modify | 1 v 1 Vi ! | I ! | :
1 Settings | 1 Calculate | 1 ) | 1 Archive restart 1 A” data and SettlngS can
! \ ! aramfactors | ! ! VIS EGe o files ' b db
I . 1 LP | Lo l P I¢ | e generated by
1 . 1 I 1 1 | 1 | T .
i | Model build L Calbration \ 1 [Opgsiegam ] 1 ' [Changsmoder] 1 submitting one job.
: I : configurations I : stream file ! : setting I
| | | |

5. Calibration

Parallel/serial run Restart (optional) Archive outputs




A CTSM Parameter Optimization Framework

0. Data preparation

Parameter list Basin files Reference datasets

The parameters are selected based on PPE parameter table and manual

identification of key hydrological processes. The list is not parameter specific. _
= Parameters in parameter

1 Parameter Default Lower Upper Source Method Type Binding

2 vcmaxha 72000 20000 250000 Param Multiplicative Hydrology None nethf’ Surface data nethf’
3 om_frac_sf 1 0.25 2 Param Multiplicative Hydrology None and name“st text f||es are

4 slopebeta -3 -10 -0.5 Param Multiplicative Hydrology None

5 fff 0.5 0.01 10 Param Multiplicative Hydrology None SuppOted

6 e_ice 6 1 8 Param Multiplicative Hydrology None

7 lig_canopy_storage_scalar 0.1 0.025 4 Param Multiplicative Hydrology None T . "

8 baseflow_scalar Default 0.0005 0.1 Namelist Multiplicative Hydrology None y MUItllecatlve and addltlve

9 FMAX Default 0.2 0.8 Surfdata Multiplicative Hydrology None factors are Supported

10 hksat_sf Default 0.9 9 Param Multiplicative Hydrology None

11 krmax 1.22E-09 5.83E-11 6.90E-09 Param Multiplicative Plant hydrau None

12 d_max 15 5 100 Param Multiplicative Stomatal resiNone - B|nd|ng parameters W|” use
13 frac_sat_soil_dsl_init 0.8 0.25 2 Param Multiplicative Stomatal resiNone

14 cv 0.01 0.0025 0.04 Param Multiplicative Stomatal resiNone the same faCtorS

15 'a_coef 0.13 0.05 0.15 Param Multiplicative Stomatal resiNone

16 upplim_destruct_metamorph 175 10 500 Namelist Multiplicative Snow Proces None .

17 n_melt_coef 200 25 600 Param Multiplicative  Snow Proces None . DefaUIt and Type are Optlonal.
18 medlynintercept 100 1 20000 Param Multiplicative Stomatal resiNone

19 precip_repartition_nonglc_all_rain_t 2 0 4 Namelist Additive Hydrology precip_repart:



A CTSM Parameter Optimization Framework

The Optimization Software Toolkit for Research Involving Computational Heuristics
(OSTRICH) is a model-independent program that automates the processes of model
calibration and design optimization without requiring the user to write any additional

software.
I 5 calib : I Global search algorithms implemented within OSTRICH
;2. Calib. setting |
| 1 s
1 Folder | o | &
o | o
! structure 1 g5
o |
! ! ! o |32 15
' ' “ $131g18|3 15
] S la i
I | Check params 1 Slelzl3 12|35 1]3]|9
| als|a|e|R(a|2|e|8
! 2|8 2|8 (5|5 | |8 |a
1 l 1 Acronym Algorithm g 19531212149 (9 |3 |rReference or Contact Information
| CalCUlate 1 APPSO Asynchronous Parallel Particle Swarm Optimization | 1 (Venter and Sobieszczanski-Sobieski, 2006)
: param faCtorS 1 BEERS Balanced Exploration-Exploitation Random Search 1 Ismatott@buffalo.edu
‘ 1 BGA Binary-coded Genetic Algorithm 1 (Yoon and Shoemaker, 1999)
1 - - | CSA Combinatorial Simulated Annealing 1 (Kirkpatrick et al., 1983)
1 Calibration I DDDS Discrete DDS 1 (Tolson et al., 2009)
| Conflguratlons I DDS Dynamically Dimensioned Search l 1 (Tolson and Shoemaker, 2007)
I_ __________ | PDDS Asynchronous Parallel DDS 1 (Tolson et al., 2014)
ielstei . : . z
PSO Particle Swarm Optimization 1 (aBnZIEE;:I:ai 019592:)02, Kennedy et al., 2001; Kennedy
RGA Real-coded Genetic Algorithm 1 (Yoon and Shoemaker, 2001)
SA Simulated Annealing 1 (Dougherty and Marryott, 1991; Marryott et al., 1993)
SCE Shuffled Complex Evolution 1 (Duan et al., 1993; Duan et al., 1992)
SMPLR Sampling Algorithm (Big Bang - Big Crunch) 1 (Erol and Eksin, 2006)
VSA Vanderbilt-Louie Simulated Annealing 1 (Vanderbilt and Louie, 1984)

https://usbr.github.io/ostrich Matott et al., 2011, 2012



A CTSM Parameter Optimization Framework
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ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc
ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc
ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc

ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

N

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

A

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-1984.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1985-1989.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1990-1994.nc

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2015-2018.nc

Raw NLDAS forcing

Subsetting
- Effectively reduce time cost
for regional studies

Time merging (month to X-years)

- Easier file management

- Avoid excess file numbers in
some systems



Using large-sample watershed modeling to support learning and development

Benefits of large-sample watershed modeling

* Improved accuracy: Broad understanding of the model’s

performance, limitations and variability

Statistical robustness: Increase the statistical robustness
of the simulation and calibration results

Regional variations: To identify and account for regional
variations in model parameters and to test the
generalizability of the model across different basins.

Improved understanding: Reveal important relationships
and dependencies between the model parameters, leading
to a deeper understanding of the underlying hydrological
processes.

Better representation: A better representation of the
diversity and variability of natural systems, enabling the
assessment of the impacts of changes in a more
comprehensive manner.
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Large-sample watershed modeling

CAMELS (Catchment Attributes and Meteorology for Large-sample Studies

A comprehensive set of catchment
attributes, meteorological variables,
streamflow observations, and model
results for 671 US catchments

Widely used in hydrology research to
develop and evaluate hydrological
models, variability and predictability

Has been a central dataset in the global
rise of machine learning in hydrology

Has been extended in many countries by
independent efforts

Was originally developed in NCAR RAL
to study streamflow predictability and
model complexity
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Large-sample watershed modeling using CAMELS

Blue: 671 CAMELS basins

Red: 10% randomly
selected basins for this
presentation.

« Each basin is simplified as a mesh grid to facilitate large-sample modeling.

» For nested basins (i.e., upstream VS downstream), the split strategy is adopted to subtract upstream
basins from downstream basins because mesh grids cannot overlap.

« All the 671 basins of CAMELS will be used in the final experiment.



Large-sample watershed modeling using CAMELS

For the calibration period:

Computation

- 1 CPU and12 hours are
allocated to each basin

- ~40 trials per basin, while
normally hundreds of trials are
needed to achieve ideal
calibration

Results

- KGE’ increases in 66 out of 67
basins after calibration.

- The median KGE' increases
from -0.01 to 0.17 after
calibration.

- The median/mean of "Best -
Original” KGE’ is 0.15/0.53.

Modified Kling-Gupta Efficiency (KGE’)
— oo (worst) to 1 (best)

(a) Iterations (b) Original KGE'

KGE =1—/(r—12+(B—172+(y—1)

Variability

-0.2



Large-sample watershed modeling using CAMELS

Daily flow Monthly flow
20041 — Ops | — Ob.
17.5] — Simu_Best | ‘ 4 — Sir:u_Best
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= 15.0 o
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E 75, £
[ [
& 5.0 &
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0.0 04 :
2 4 6 8 10 12
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Summary and Next Steps

A streamlined CTSM calibration workflow and hydrology ‘testbed’:

» This new CTSM calibration capability development supports a larger project to assess the robustness of
different hydrological model configurations for projecting forced responses to climate change.

« The CAMELS-CTSM implementation offers a useful and efficient testbed for evaluating alternative CTSM
model configurations and development choices.

» The parameter estimation workflow will enhance the local performance of the CTSM hydrology component
and yield insights into regional to continental parameter estimation strategies.

Next steps:

 Future calibration development efforts include:

improving parallel computation

multi objective calibration

further parameter refinement
distributed domains

the use of river routing
regionalization to uncalibrated basins

+ We will also assess different structural configuration options and the hillslope parameterization



Thank you! — = .

guogiang@ucar.edu 7



