Implementing a satellite emulator in CESM2 to evaluate the impact of clouds on ocean chlorophyll observations

Genevieve Clow, Nikki Lovenduski, Mike Levy, Keith Lindsay & Jen Kay

Phytoplankton

- Base of the marine food web
- Responsible for 50% of primary productivity on Earth
- Global abundance estimated through remote sensing of chlorophyll (chl.)

We are unable to reliably detect phytoplankton from satellite observations in the regions where they are most abundant.

Chlorophyll Satellite Observations

Satellite Emulator for Chlorophyll

Included in emulator:

- Clouds
- Sunlight
- Sea ice

Not included yet:

- Sun glint
- Sensor viewing angle
- White caps
- Coccolithophores
- Aerosols

CESM 2.2 Setup	
Atmosphere model	CAM6 with COSP enabled
Ocean model	POP2 with MARBL
Component set	B1850
Grid	f09_g17
Run Length	50 years (analyzed the last 30)

North Pacific Satellite Data Comparison

Satellite Data (MODIS & VIIRS, 2014 - 2019)

CESM Satellite Emulator (5 years pre-industrial)

Climatology Differences

Mean Seasonal Cycle Over Biomes

Biomes from Fay & McKinley 2014

Application: Gap-filling Testbed

Difference: Cloudy Chl. — Baseline Chl.

- 7.5 - 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0

10.0

Conclusions:

We developed a satellite emulator for ocean chlorophyll in CESM

Initial results indicate that the chlorophyll climatology and mean seasonal cycles are biased due to missing data from cloud cover

Future applications: model tuning, gap-filling, trend emergence

Thank you! Contact Info: genevieve.clow@colorado.edu

-5.0 -7.5 -10.0

Difference in time to emergence: Cloudy Chl. — Baseline Chl.

EXTRA SLIDES

Chlorophyll Climatology Differences

Total bias in simulated observations: **Cloudy Chl – Total**

Bias due to daylight-only sampling and sea ice: Baseline – Total

Differences in Seasonal Cycle

New Hourly Model Outputs

Total Chlorophyll (Surface): Sum over all phytoplankton functional types

Baseline Chlorophyll: Total chlorophyll with daylight and sea ice masks

Baseline Chlorophyll with Aqua MODIS swath:

ISCCP Chlorophyll: Baseline with ISCCP clouds used for weighting

MODIS Chlorophyll: Baseline with MODIS clouds used for weighting

MODIS Chlorophyll with swath:

Cloud Comparison

l 15