Land parameter uncertainty impacts the mean climate state

Claire Zarakas¹, Abigail Swann¹, Amy Liu¹, Daniel Kennedy², Katherine Dagon², David Lawrence², Gordon Bonan², Danica Lombardozzi², Charles Koven³

¹University of Washington ²National Center for Atmospheric Research ³Lawrence Berkeley National Laboratory

Land parameter uncertainty contributes to uncertainty in land fluxes and land responses to change

Land surface changes can generate significant climate responses

Laguë et al. 2019

Land parameter uncertainty in a coupled context

To what extent can land parameters influence the atmosphere?

How do atmospheric feedbacks modulate land parameters' impact on terrestrial processes?

Ran coupled parameter perturbation ensemble (PPE) that leveraged output from the CLM5 PPE

Selected 18 land parameters that:

- had the biggest impact on land-to-atmosphere fluxes (e.g. water, energy, momentum) in the offline CLM5 PPE
- sampled different functional areas of CLM5

Parameter Description	Parameter Category
Dry surface layer parameter	Soil hydrology
Decay factor for fractional saturated area	Soil hydrology
Fraction of saturated soil for moisture value at which dry surface layer initiates	Soil hydrology
Sand percentage	Soil hydrology
Maximum fraction of leaf that may be wet prior to drip occurring	Canopy hydrology
Medlyn intercept of conductance-photosynthesis relationship	Stomatal conductance
Medlyn slope of conductance-photosynthesis relationship	Stomatal conductance
Plant segment max conductance	Plant hydraulics
Triose phosphate utilization at 25C	Photosynthesis
Baseline proportion of nitrogen allocated for electron transport	Photosynthesis
Determines response of electron transport rate to light availability	Photosynthesis
Activation energy for leaf maintenance respiration	Respiration
Stem reflectance: near-IR	Optical properties
Number of stems per meter squared	Biomass heat storage
Max value zeta ("height" used in Monin-Obukhov theory) can go to under stable conditions.	Roughness/boundary layer
Ratio of momentum roughness length to canopy top height	Roughness/boundary layer
Momentum roughness length for snow	Roughness/boundary layer
Upper lim. for snow densification through destructive metamorphism	Snow processes

Ran one-at-a-time simulations for 18 land parameters

- Observationally-informed minimum and maximum values
- CESM2: CAM6, CLM5, slab ocean (not flux corrected)
- Constant 1850 conditions (CO2, CH4, etc.)
- •140 year simulations

Land parameters significantly influence the mean climate state

Land parameters significantly influence the mean climate state

2.2°C spread in global mean land surface temperature

Parameters that yielded the largest temperature change are related to soil hydrology and stomatal conductance/plant water use

Biomass heat storage parameters can impact land temperatures globally

By sampling these 18 parameters, we have created many combinations of evaporative fraction and albedo change

By sampling these 18 parameters, we have created many combinations of evaporative fraction and albedo change

Leading EOF explains 78% of variance in mean land surface temperature across the coupled ensemble

Leading EOF of Land Temperature Change

Land-driven temperature changes form a different spatial pattern than radiatively-driven warming

Radiatively Driven Warming

Land Parameter Driven Temperature Change

Change in Global Mean Land Temperature (C) Patterns scaled to 1 degree global mean land surface warming

Precipitation is also sensitive to land parameters

Some *climatological* hotspots of precipitation sensitivity to land parameters align with *short-timescale* hotspots of land-atm coupling

Note these are *two different metrics*

Leading mode of variability in tropical precipitation across PPE

(48% of variance across ensemble)

Leading mode of variability in tropical precipitation resembles pattern of precipitation changes due to plant physiological responses

Our analysis can give insight into the mechanisms through which land parameters influence precipitation

Kooperman et al. 2018

→ Need to account for land parameter contributions to uncertainty and biases in model representations of present- day climate

→ Need to account for land parameter contributions to uncertainty and biases in model representations of present- day climate

> We need a way to analyze if new behaviors in CLM will have a coupled impact, and to identify this early in the model development process

→ Need to account for land parameter contributions to uncertainty and biases in model representations of present- day climate

→ Nonstationarity of land parameters (e.g. climate-driven shift in plant traits) could generate atmospheric responses

→ Need to account for land parameter contributions to uncertainty and biases in model representations of present- day climate

→ Nonstationarity of land parameters (e.g. climate-driven shift in plant traits) could generate atmospheric responses

→ Land-driven climate changes =/= radiatively-driven climate changes

Claire Zarakas czarakas@uw.edu

How do atmospheric feedbacks modulate land parameters' impact on terrestrial processes?

Isolated the impact of atmospheric feedbacks by comparing coupled and offline parameter perturbation experiments

For the *water cycle*, atmospheric feedbacks generally dampen parameters' impact on a global scale

Atmospheric feedbacks dampen water cycle responses globally

→ Need to develop, evaluate, and benchmark land models in a *coupled context*

Offline GPP ≈ Coupled GPP

For the *carbon cycle*, there are regional hotspots where atmospheric feedbacks have a larger impact on ecosystem functioning

Leading mode of variability in differences in mean GPP between coupled and offline simulations

For the *carbon cycle*, there are regional hotspots where atmospheric feedbacks have a larger impact on ecosystem functioning

Leading mode of variability in differences in mean GPP between coupled and offline simulations

For the *carbon cycle*, there are regional hotspots where atmospheric feedbacks have a larger impact on ecosystem functioning

Leading mode of variability in differences in mean GPP between coupled and offline simulations

Land parameter uncertainty

- Significantly influences the mean climate state
- Atmospheric feedbacks
 - Water cycle: global dampening
 - Carbon cycle: regionally important

Get in touch if you want to use this dataset!

Claire Zarakas czarakas@uw.edu

Land parameters significantly influence the mean climate state

Land parameters significantly influence the mean climate state

Parameters related to **soil hydrology** drive the largest temperature responses