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in 2F) for Heat Dome event of June 27 and 28, 2021
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The 2021 western North America heat wave among
the most extreme events ever recorded globally

Vikki Thompson'#, Alan T. Kennedy-Asser', Emily Vosper', Y. T. Eunice Lo', Chris Huntingford?,
Oliver Andrews', Matthew Collins®, Gabrielle C. Hegerl®, Dann Mitchell'

In June 2021, western North America experienced a record-breaking heat wave outside the distribution of
previously observed temperatures. While it is clear that the event was extreme, it is not obvious whether other
areas in the world have also experienced events so far outside their natural variability. Using a novel assessment of
heat extremes, we investigate how extreme this event was in the global context. Characterizing the relative inten-
sity of an event as the number of standard deviations from the mean, the western North America heat wave is re-
markable, coming in at over four standard deviations. Throughout the globe, where we have reliable data, only five
other heat waves were found to be more extreme since 1960. We find that in both reanalyses and climate projec-
tions, the statistical distribution of extremes increases through time, in line with the distribution mean shift due to
climate change. Regions that, by chance, have not had a recent extreme heat wave may be less prepared for poten-
tially imminent events.

“Characterizing the relative intensity
of an event as the number of standard
deviations from the mean, the western North
America heat wave is remarkable, coming in at
over four standard deviations. Throughout the
globe, where we have reliable data, only five
other heat waves were found to be more
extreme since 1960.”

“...the western North America heat wave of
June 2021 was an exceptional event. For that
region, the extreme event was unprecedented

in the observational record in terms of
absolute magnitude and heat stress level.”
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What did the extreme heat do to
trees and forests?



Responses of trees to heat waves and extreme heat events

Plant, Cell & Environment Volume 38, Issue 9, pages 1699-1712, 1 SEP 2014

DOI: 10.1111/pce.12417
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Leaf area development - N ) Photosynthesis - Y X PSII functioning - 'S
Leaf shedding + ? Dark respiration + Y Thylakoid membrane fhudity + w:
Early budburst  0/+ N Photorespiration - ;4 X Rubisco activity - s
Growth Y VOC emission +/0 ? HSP expression + N
Mortality + g Stomatal conductance +/= ¥ X
Fecundity - 3 Transpiration +/= N

Responses to extreme heat occur from molecular to whole tree to ecosystem levels and
there is wide variation in thermal tolerance within and among species and ecotypes


http://onlinelibrary.wiley.com/doi/10.1111/pce.2015.38.issue-9/issuetoc
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Foliage scorch: the most obvious symptom of the heat dome
Impact on trees




T

Wi

]

Washington

Oregon

Legend
- Post-Heat Dome Foliar Damage

Aerial damage surveys conducted by the U.S.
Forest Service indicated that more than 230,000
ha of forest were affected in Oregon and
Washington alone.

Cyan circle ~represents area in photo at bottom

Coastal Range of Oregon, 2021



In situ foliar browning can happen in minutes, and
leaf damage can persist for weeks to months
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Daily probability of growth cessation
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Photoperiod cues and patterns of genetic variation limit
phenological responses to climate change in warm parts of
species’ range: Modeling diameter-growth cessation in coast
Douglas-fir

Kevin R. Ford* | Constance A. Harrington® | J. Bradley St. Clair?

A prior study (left) showed that young Doug-fir
trees stopped diameter growth in late June 2015
after another early season heat wave. Similar
growth halt in old-growth Doug firs in 2021 (below)
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Evapotranspiration of H,O
(top) and net ecosystem
exchange of CO, (bottom)
at two Douglas-fir
dominated forest
ecosystems in British
Columbia, Canada (CA-Ca3,
left panels) and the US
Pacific Northwest
(NEON-WREF, right
panels).

The forest at the
NEON-WREF was able to
recover fluxes while the

CA-Ca3 site appears to
have experienced
prolonged stress

throughout the
remainder of the
growing season
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Chlorophyll Fluorescence

(% of maximum)
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Modeling: Elastic heat stress

Observed

- —®— Ponderosa Pine
—O— Douglas fir
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Modeling Inelastic heat stress
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Conclusions

The response was individualistic (tree level) and site-specific
(ecosystem level)

Responses varied from visual foliage scorch to non-obvious leaf
damage to tree growth impacts to anomalous ecosystem fluxes.
The role of phenology in the response (timing of heat wave
relative to seasonal development) was important.

Models need to incorporate heat damage and lagged responses

Thank you!



