Modeling leaf phenology under global climate change

Aya Lahlou, PhD student Columbia University, Earth and Environmental Engineering Department Principal investigator: Pierre Gentine

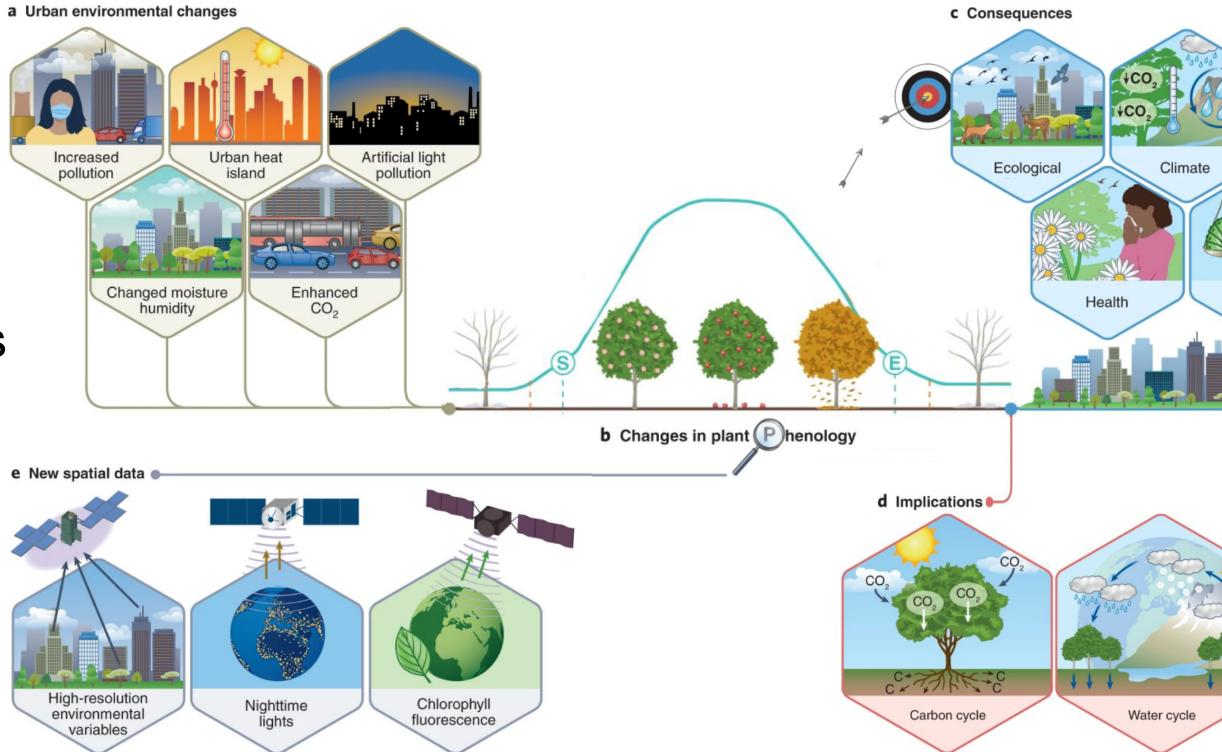
Leaf phenology:

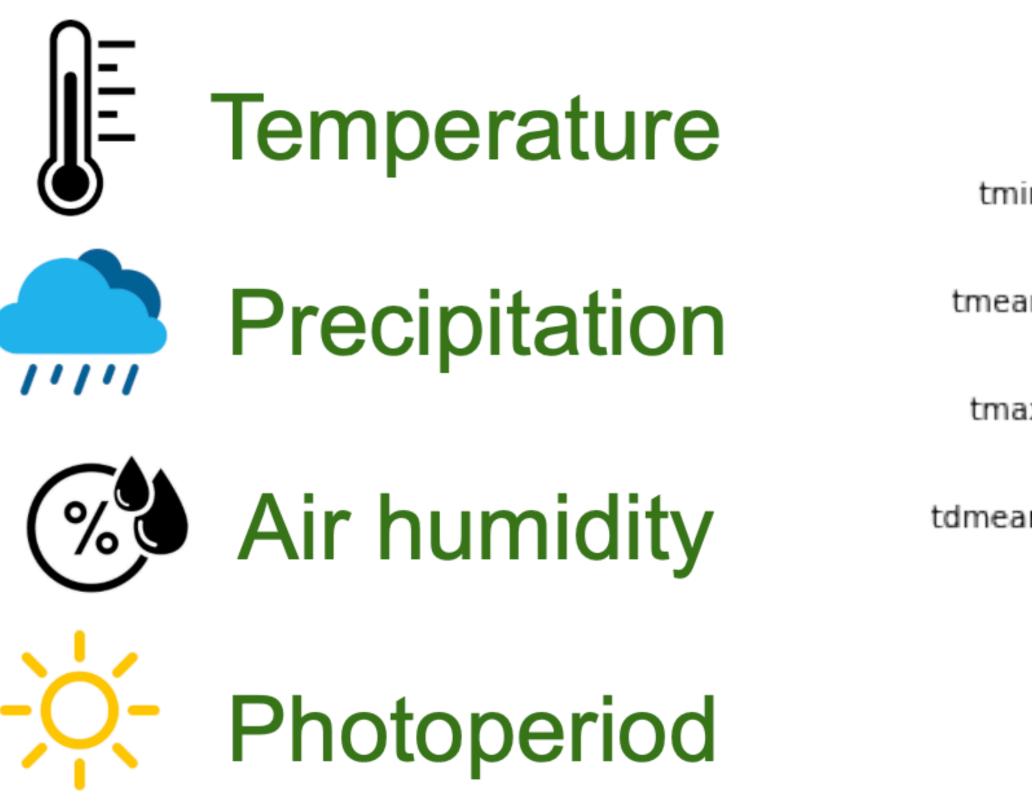
- indicator of climate change
- control of carbon uptake lacksquare
- feedback to water cycle and energy fluxes

Importance of constraining phenology:

- difficult to predict \bullet
- informs on climate change response lacksquare
- economic, health, ecological impact

Motivation





Drivers of leaf phenology

							-1.0
ppt (inches) -	1	0.12	0.066	0.012	0.18	0.047	10
tmin (degrees F) -	0.12	1	0.98	0.92	0.96	0.81	- 0.8
nean (degrees F) -	0.066	0.98	1	0.98	0.96	0.83	- 0.6
max (degrees F) -	0.012	0.92	0.98	1	0.91	0.82	- 0.4
nean (degrees F) -	0.18	0.96	0.96	0.91	1	0.76	- 0.2
CSIF -	0.047	0.81	0.83	0.82	0.76	1	
	ppt (inches) –	tmin (degrees F) –	tmean (degrees F) –	tmax (degrees F) –	tdmean (degrees F) –	- SIF	

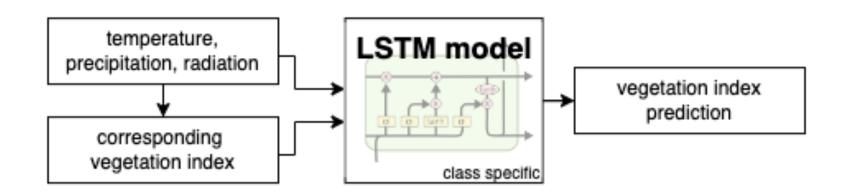
Correlation matrix

8 6 Data :

- Satellite observations of vegetation indicator: Contiguous Solar-Induced Fluorescence from MODIS
- Climate data (temperature, precipitation, radiation)

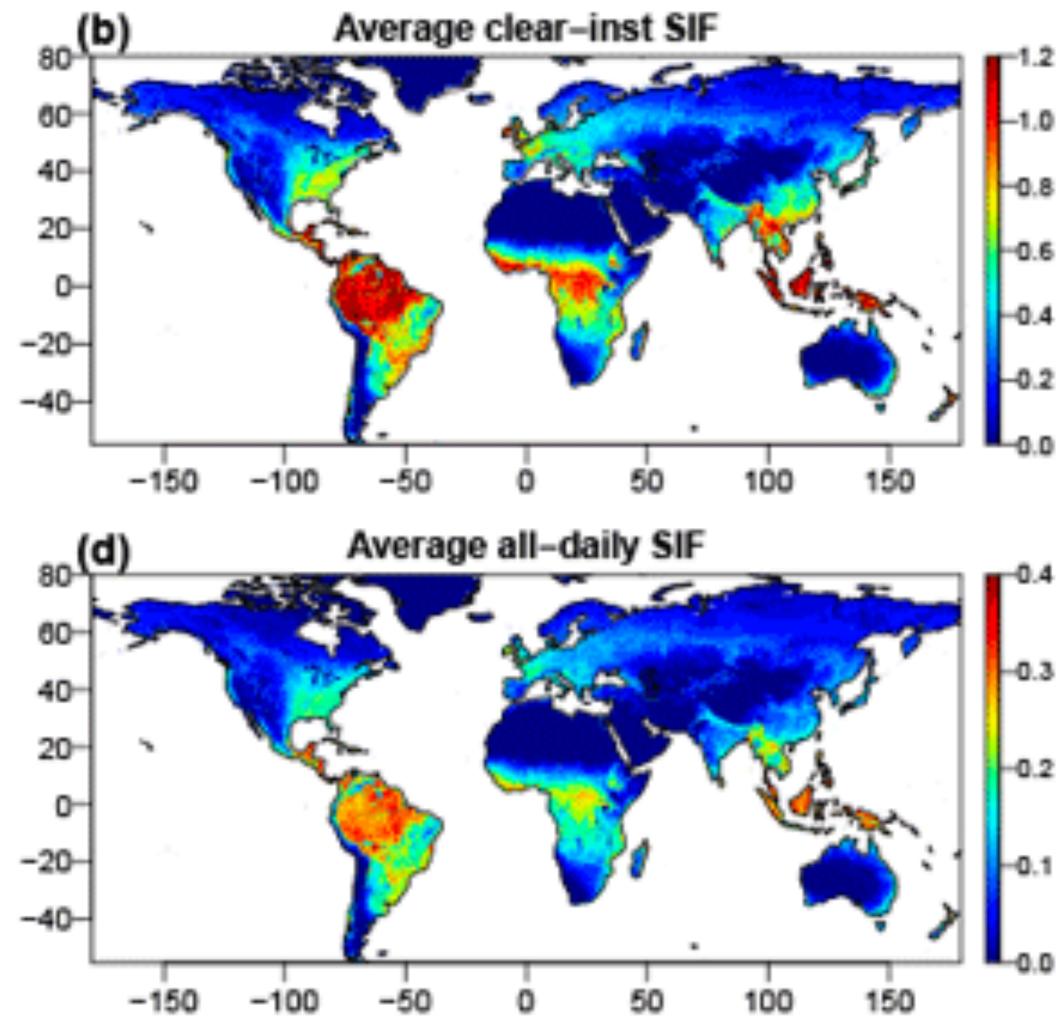
Machine Learning model:

- Models including time recurrence
- Long short term memory (LSTM) fitted across plant functional types



Lstm model pipeline

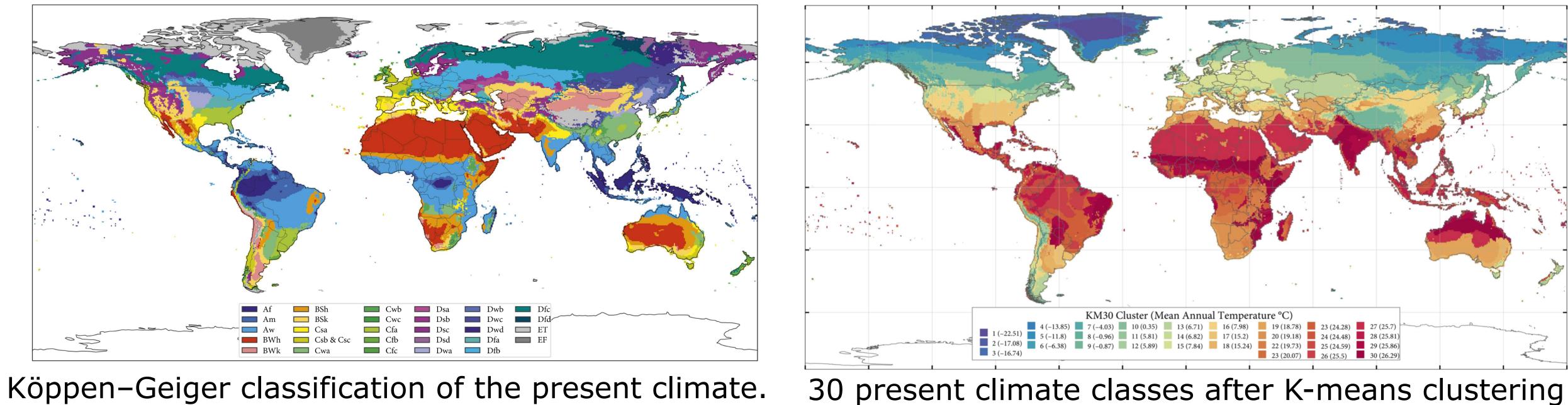
Methods



Source: (Yao Zhang et al. 2018)

1.0 0.8

Clustering for climate classification



- Uses broad empirical averages
- Does not reflect recent climate changes

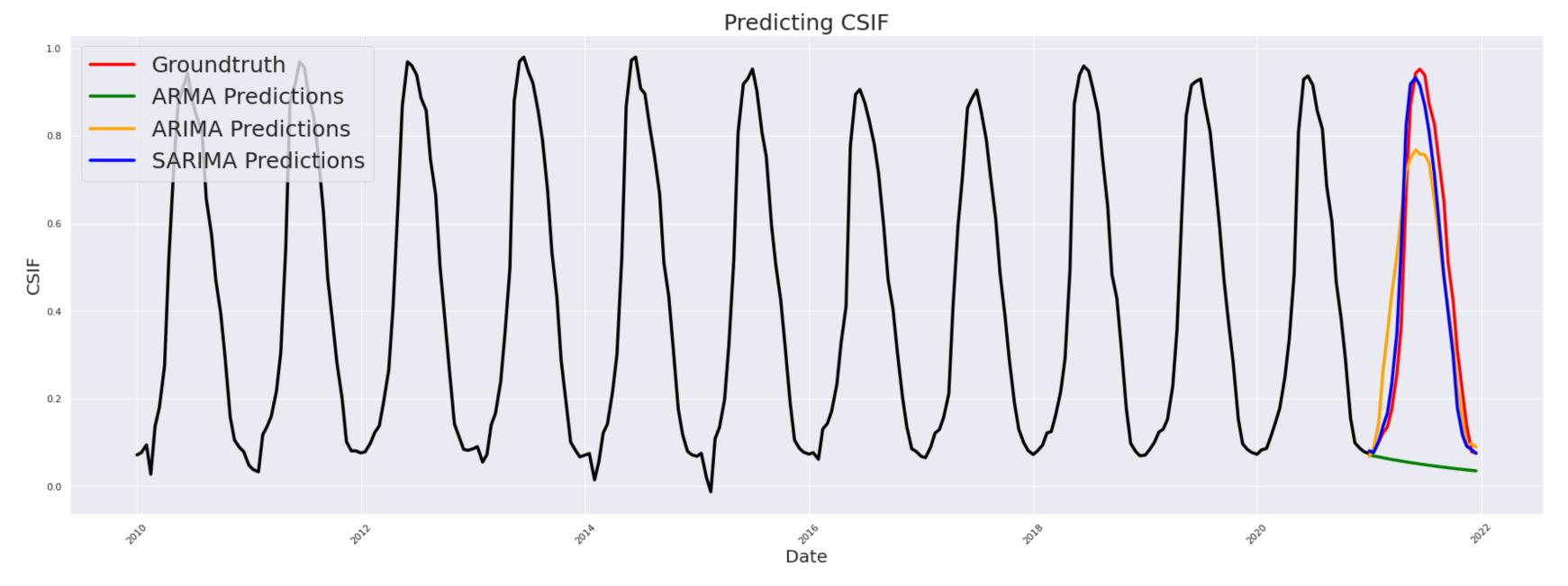
- Adaptable: CSIF based or climate based

Initial results

Seasonal Autoregressive Integrated Moving Average (SARIMA)

$$y_t'=c+\phi_1y_{t-1}'+\dots+\phi_py_{t-p}'+ heta_1arepsilon_{t-1}+\dots+ heta_qarepsilon_{t-q}+arepsilon_t,$$

$$(1 - \phi_1 B) (1 - \Phi_1 B^4) (1 - B) (1 - B^4) y_t = (1 - \phi_1 B^4) y_t$$



CSIF forecasting for Denver, CO, USA

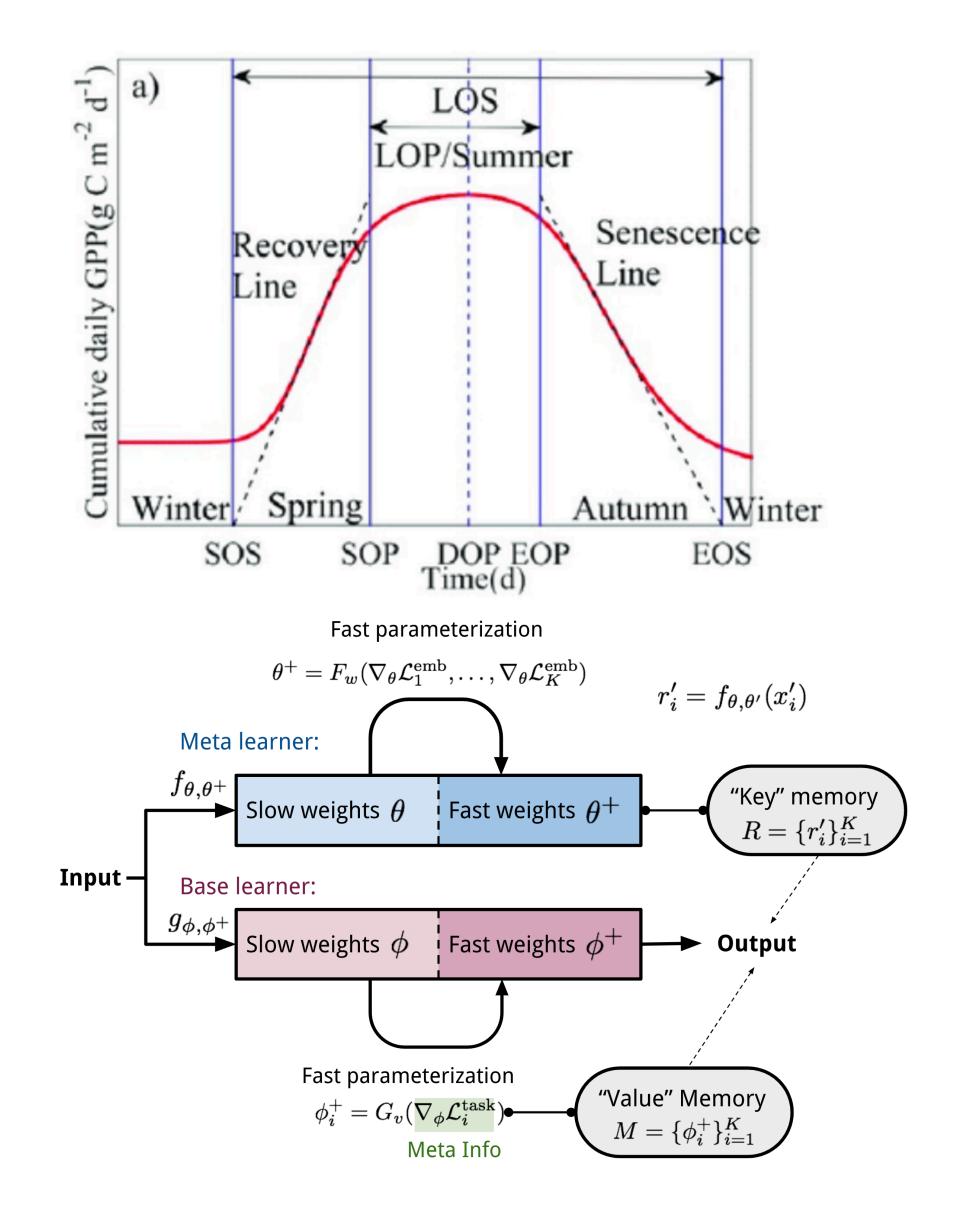
- $p=~{
 m order}~{
 m of}$ the autoregressive part;
- d = degree of first differencing involved;
- $q=~{
 m order}$ of the moving average part.

 $1+ heta_1B)\;(1+\Theta_1B^4)arepsilon_t.$

RMSE			
0.5099			
0.1491			
0.0908			

- Defining metrics
 - for phenological events
 - for model validation
- Model improvements:
 - Meta-learning
 - New attention mechanisms
- Model Testing

Next steps



Remaining Challenges

1- Impacts of extreme climates

Less accurate phenology models during extreme climate events

2- Lack of regional diversity

Overrepresentation of boreal and temperate regions

Lack of data from tropical/subtropical regions

