Subseasonal predictability from atmospheric, land, and ocean initial states

Jadwiga (Yaga) Richter, Anne (Sasha) Glanville, Teagan King, Steve Yeager, Sanjiv Kumar, Nick Davis, Paul Dirmeyer, & Gokhan Danabasoglu

February 22, 2022

Introduction & Goal

Goal: To quantify how much subseasonal predictability comes from the initial state of atmosphere, land, and ocean/sea-ice.

Fig by P. Dirmeyer: representative of predictability of mid-latitude surface temperature over land

- **Compare skill** (Anomaly Correlation Coefficient, ACC)
- Standard reforecast set (Realistic ATM, LND, OCN initialization)
 1999 2020; weekly initializations; 11 member ensemble

Additional reforecast sets with one or two initial states set to climatology

1) climoATM (OCN & LND var)

2) climoLND (ATM & OCN var)

3) climoOCN (ATM & LND var)

4) climoALL

5) climoLNDclimoOCN (ATM var)

6) climoATMclimoOCN (LND var)

7) climoATMclimoLND (OCN var)

Results:

ACC if one component is turned into climatology:

Areas of ACC in the experimental reforecasts suite that are not statistically different from standard reforecasts are stippled

Quantifying Subseasonal Sources of Predictability

ACC if only 1 component is variable:

UCAR

Role of ENSO

Active – Neutral ENSO

Increased skill due to ENSO, mainly over S. America and Africa

Seasonal differences very small

Sources of Predictability

Reforecast Set	Initial Conditions	Predictability Sources
standard	standard ATM, standard LND, standard OCN	CLIM, VATM, VLND, VOCN, CAL, CAO, CLO
climoATM	climatological ATM, standard LND, standard OCN	CLIM, VLND, VOCN, CAL, CAO, CLO
climoLND	Standard ATM, climatological LND, standard OCN	CLIM, VATM, VOCN, CAL, CAO, CLO
climoOCN	Standard ATM, standard land, climatological OCN	CLIM, VATM, VLND, CAL, CAO, CLO
climoOCNclimoLND*	Standard ATM, climatological LND, climatological OCN	CLIM, VATM, CAL, CAO
climoATMclimoOCN	Climatological ATM, standard LND, climatological OCN	CLIM, VLND, CAL, CLO
climoATMclimoLND	Climatological ATM, climatological LND, standard OCN	CLIM, VOCN, CAO, CLO
climoALL	Climatological ATM, LND, OCN	CLIM

CLIM = Climatology (atmos, land, ocean)

VATM = Atmos VariabilityVLND = Land VariabilityVOCN = Ocean Variability

CAL = Coupling atmosphere-landCAO = Coupling atmosphere-oceanCLO = Coupling land-ocean

(1) **ACC**_{standard} = ACC(CLIM +VATM+VLND+VOCN+CAL+CAO+CLO)

If linearity would hold:

(2) $ACC_{standard} = ACC_{SUM}$, where

(3) $ACC_{SUM} = ACC_{c} + ACC_{VATM} + ACC_{VLND} + ACC_{VOCN} + ACC_{CAL} + ACC_{CAO} + ACC_{CLO}$

Sources of Subseasonal Predictability

We can derive individual contributions from the experimental reforecast sets:

(5) ACC_{VATM}= ACC_{standard} - ACC_{climoATM}

(6) $ACC_{VLND} = ACC_{standard} - ACC_{climoLND}$ (7) $ACC_{VOCN} = ACC_{standard} - ACC_{climoOCN}$

Assume CLO (land-ocean coupling) = 0

(8)
$$ACC_{CAL} = (ACC_{climoATMclimoOCN} - ACC_{climoALL}) - ACC_{VLND} =$$

= $(ACC_{climoATMclimoOCN} - ACC_{climoALL}) - (ACC_{standard} - ACC_{climoLND})$

(9)
$$ACC_{CAO} = (ACC_{climoATMclimoLND} - ACC_{climoALL}) - ACC_{VOCN} =$$

= $(ACC_{climoATMclimoLND} - ACC_{climoALL}) - (ACC_{standard} - ACC_{climoOCN})$

Sources of Predictability

Linearity assumptions holds everywhere except for South America

sum

Sources of Predictability: Precipitation

- Precipitation skill very low (in general)
- Atmospheric variability main driver except for South America and SE Asia/Australia
- Linearity assumption holds very well everywhere

sum

Discussion

- Results suggest that atmospheric initial state is the dominant source of 2-m air temperature predictability through weeks 3 - 4 for the majority of land areas
- Land IC plays a small role in the CESM2(CAM6) subseasonal system and higher subseasonal skill for surface temperature can be obtained with climatological land initialization: possible that land-coupling not strong enough in CESM2
- Predictability from the **ocean initial state** exceeds that from the atmosphere only after 4 weeks; Slightly increased skill during active ENSO years
- Atmospheric initial state is the main driver of subseasonal precipitation skill, except for South America and SE Asia/Australia
- Prediction skill seems to be fairly linear

• Available online:

https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.s2s_hindcasts.cesm2.climo.html

• On Casper:

/glade/campaign/cesm/development/cross-wg/S2S/CESM2/

• DOI: https://doi.org/10.5065/0s63-m767

Climate Data Gateway at NCAR	NCAR is sponsored by National Science Foundation
Home Search Projects About Contact	Sign In
Dataset	
CESM2 Model Output	
CESM2 S2S Climo Studies	
Summary History	
Related Activities Project - CESM	
Child Datasets	
climoALL	
climoATM	
climoATMclimoLND	
climoLND	
climoOCN	
climoOCNclimoATM	
climoOCNclimoLND	

