

# Predictable Decadal Forcing of the North Atlantic Jet by the SPNA

### Kristian Strommen\*, Tim Woollings, Paolo Ruggieri, Paolo Davini, Isla Simpson

Preprint soon (today?) available in Weather and Climate Dynamics

\* Supported by a Thomas Philips and Jocelyn Keene Junior Research Fellowship

#### **Past studies**

Simpson et al. (2018) Smith et al. (2019) Athanasiadis et al. (2020)

Decadal variations in the winter NAO are predictable over period 1954-2015.

- AMV is suggested as possible source of skill.

Some outstanding questions

- 1. Is it really the AMV?
- 2. What exactly is being predicted?
- 3. Pathways/mechanisms?



Some outstanding questions

- 1. Is it really the AMV?
- 2. What exactly is being predicted?
- 3. Pathways/mechanisms?

Jet latitude and jet speed:

- 1. Different seasonal/decadal variability
- 2. Different responses to thermal forcing (!!)

#### □ single index analysis can give wrong impression



### How to compute latitude/speed

#### U850 anomaly on some day



Woollings et al.

## DATA BEING USED

- 1. The Decadal Prediction Large Ensemble (DPLE) covers 1954-2015
- 2. A seasonal IFS hindcast ensemble (ASF20C) covers 1900-2010 (!) (uses prescribed SSTs from ERA20C) (Weisheimer et al. 2017)
- 3. ERA20C reanalysis

Focus is on 10/30-year running ensemble means

NB! Decadally averaged seasonal forecasts =/= a decadal forecast!

But useful to think of it as like a `nudged' decadal forecast that we can use to study decadal signals



- ASF20C can skillfully reproduce decadal NAO variability over entire period 1900-2010
- It's all coming from the jet speed
- No predictability of the latitude!

See also: Parker et al. (2019)



- Same picture for DPLE: only the speed is predictable
- Despite giving ASF20C the correct SSTs and correct Nov 1<sup>st</sup> (every year), it has similar `skill' to DPLE
  - the signals in DPLE and ASF20C are probably the same (and visible within a single winter season)



correlations of jet speed vs SSTs at gridpoints (1900-2010, DJF) Look for any/all potential SST signals that satisfy:

- 1. Common to forecasts / ERA20C
- 2. Statistically significant
- 3. Visible on both seasonal and decadal timescales
  - the SPNA is the only match

(SPNA is also there in DPLE: the blob in the south Pacific is not, so can be discounted)

#### Large, significant correlations between SPNA SSTs and decadal jet speed



See also: Simpson et al. (2018)

# TROPOSPHERIC

### PATHWAY

1. SST-induced heating extends

up to ~300 hPa



Filled contour = Corr(SPNA, Zonal Air Temp) Line contour = Climatological zonal winds

#### 2. Changes to tropospheric meridional temperature gradient

+ geostrophic balance ≈ all the observed decadal variability



### IS IT REALLY OCEAN FORCING ATMOSPHERE?

(and not other way round?)

- ASF20C hindcasts use prescribed SSTs: correlations can only arise due to forcing from the SSTs!
- 2. Heatfluxes and SSTs are positively correlated in the SPNA: indicative of forcing from SSTs
- If it's all atmospheric forcing then where is the skill coming from?
  (Simpson et al. 2018 showed the stochastic winds are unpredictable)
- Impact of `stochastic atmospheric forcing' component can be estimated: the effect is <u>very small</u> on decadal timescales

#### This seems to strongly suggest the SPNA forces the jet

### SUGGESTED PICTURE OF DECADAL JET VARIABILITY



Thanks owed to two key points:

- 1. The SPNA is optimally situated to shift the meridional gradient around jet core
- 2. The SPNA is predictable (Yeager et al.)

# THE END

See preprint for more on the `signal-to-noise paradox', AMOC vs aerosols etc.