ENSO forecast skill in a changing climate

Jiale Lou^{1,2}, Matthew Newman², Andrew Hoell², and Andrew Wittenberg³

¹Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA ²Physical Sciences Laboratory, NOAA, Boulder, CO, USA.

³Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA.

2023 CESM Climate Variability and Change Winter Working Group Meeting

Motivation: Multi-decadal variation of ENSO forecast skill

Root mean square skill score of SST at 6-month lead

Ding et al. (2018; J. Clim.)

Figure: Model-analog and NMME hindcast skills of monthly SSTa at 6-month forecast lead for the period of 1982-2015.

Screenshot: The real-time seasonal ENSO predictions made by **model-analog technique**.

https://www.psl.noaa.gov/forecasts/seasonal/

ENSO forecast skill underwent multi-decadal variations with the minimum skill in the middle of 20th century.

Figure: Cross-verification of the ensemble-mean anomaly correlation (AC) skill evolution of NINO3.4 predictions over the 30-year sliding hindcast windows for NINO3.4 time series.

Probabilistic ENSO forecast skill underwent multi-decadal variations with the minimum skill in the middle of 20th century.

ROC score: hit rate vs. false alarm rate

ROC score = 1Perfect scoreROC score < 0.5</td>No skill

ROC score evolution of probabilistic ENSO predictions

Figure: Predictive relative operating characteristic (ROC) area evolution for (a) La Niña condition and (b) El Niño condition based on NINO3.4 time series over the 30-year moving hindcast windows.

ENSO forecast skill corresponds well with the variance change

Figure: same as in previous slide

Figure: 30-yr moving variance of NINO3.4 index based on seven observations.

(Lou, Newman, and Hoell. submitted)

Question: How much can we attribute the past multi-decadal variation of ENSO forecast skill to climate change vs. internal variability?

Experiment design

Experiment 1: Library: CESM2 **piControl** simulation (1200 year)

Experiment 2: Library: CESM2 large ensemble (CESM2LENS; 100 ensemble members)

12-year moving window [12 (year) *100 (ensemble)=1200 samples] e.g., verification year: 1972, library year: 1960-1971

Experiment 3: Perfect model experiment CESM2LENS 10-year chunk of period (1871-1880; 1881-1890; ... 2001-2010; 2011-2020)

CESM2 piControl vs. historical large ensemble

Figure: AC skill of NINO3.4 for the period of 1871-2020.

Figure: Seasonality of NINO3.4 forecast skill.

Perfect model experiment – CESM2LENS

Figure: 30-yr moving standard deviation of NINO3.4 in CESM2LENS.

Figure: Perfect-model AC skill of NINO3.4 predictions over the 30-yr moving hindcast windows.

Relationship between ENSO forecast skill and its variance

Since each ensemble member simulates ENSO variations differently, we selected a few that correctly reproduce the minimum variance observed in the mid-20th century.

The ENSO forecast skill **decreases** due to the **reduction** of ENSO variance in the mid-20th century.

Summary

Conclusions:

- ENSO forecast skill underwent multi-decadal variations with the minimum skill in the middle of 20th century;
- La Niña predictions have been generally more skillful than El Niño, at both short and long leads **in recent decades**, but this difference may be **transient**.

Ongoing: How much can we attribute the past multi-decadal variation of ENSO forecast skill to climate change vs. internal variability?

- ENSO variability is mainly **internally forced**;
- If externally-forced ENSO variance increases in a changing climate, the forecast skill will increase correspondingly.

J. Lou, M. Newman, A. Hoell. Multi-decadal variation of ENSO forecast skill since the late 1800s. (submitted) J. Lou, M. Newman, A. Hoell, A. Wittenberg. ENSO forecast skill in a changing climate. (in prep.)

Email: jiale.lou@noaa.gov

Multi-decadal variation of ENSO forecast skill since the late 1800s using the model-analog technique

Analog: if two atmospheric states resemble each other rather closely, each of the state can be viewed as equivalent to the other state plus reasonably small perturbations (Lorenz 1969).

Advantages:

• Construct model-analogs to estimate its own state (no initialization shock)

• Forecasts with no additional integration needed (computationally cheap)

Model-analog skill is comparable to skill from the traditional assimilation-initialized operational model (ECMWF SEAS5) since 1900s.

Figure: Seasonal mean AC skill of NINO3.4 predictions as a function of hindcast period on the horizontal axis and forecast lead time on the vertical axis.

Years

Multi-decadal variation of ENSO forecast skill

AC skill evolution of NINO3.4 predictions

Supplement

(a) AC skill of NINO3.4 predictions (b) Taylor diagram of NINO3.4 predictions 1.0 Best nine CMIP6 models 0.2 _{0.3} 0.1 5 5000 bootstrapping samples - CESM2* -0.4 ACCESS-ESM1.5 CanESM5 0.5 0.8 Correlation GISS-E2.1-G Standard deviation (Normalized) 0.5 1.0 0.6 HadGEM3-GC31-MM* HadGEM3-GC31-LL* INM-CM5.0 **IPSL-CM6A-LR** AC skill 0.6 MIROC6 0.8 MPI-ESM1.2-LR MRI-ESM2.0 SAM0-UNICON* UKESM1.0-LL* 0.4 0.9 CAMS-CSM1.0 CIESM* E3SM1.0 EC-Earth3* 0.95 0.5 FGOALS-g3 0.2 GFDL-ESM4* GISS-E2.1-H **KIOST-ESM** 0.99 MIROC-ES2L MPI-ESM1.2-HAM 0.0 --- NESM3 REF 0.0 NorESM2-LM* 0.5 1.0 1.5 20 5 10 15 Standard deviation (Normalized) lead time [months]