Impact of stochastic parameterizations in coupled simulations with CESM2

JUDITH BERNER, NCAR ABBY JAYE, NCAR

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

Stochastic parameterization

- Provides stochastic realizations of the subgrid-flow, not some assumed bulk scale flow
- Stochastic parameterization schemes describe the subgrid-scale motion in terms of a pdf constrained by the resolved flow

Stochastic realizations

- □ SPPT itself does not conserve humidity and energy
- Climate models have energy fixers, so energy conservation is dealt with

$$rac{1}{g}\int_{p_{surf}}^0\left(rac{dq_v}{dt}+rac{dq_l}{dt}+rac{dq_i}{dt}+rac{dq_r}{dt}+rac{dq_s}{dt}
ight)dp_h=rac{1}{g}\int_{p_{surf}}^0rac{dq_t}{dt}dp_h=F_{pr}-F_e$$

- SPPT perturbations should be added to precipitation and evaporation (P-E), i.e. surface fluxes (pers comm. Christensen, Pegion, Davide, Weisheimer, Subramanian)
- □ In practice, not straightforward (see next slide)

Experiment setup

- Coupled Global Climate model
- □ CESM2 (CMIP6 control tag)
- 1 degree horizontal resolution in atmosphere and ocean
- Subseasonal to seasonal runs: 1999-2018 weekly initializations
- (Coupled climate run: 45 years, constant preindustrial forcing)

Outline

- Impact on subseasonal-to-seasonal skill
- Impact on systematic error in mean and variance
- Impact on modes of variability

Perfect Model skill, ACC for T2m

- □ Most skill in the tropical belt
- CESM has more skill than ECMWF for weeks 3-4 and longer
- Large RMS error over NH land is an expression of large amplitude anomalies, not necessarily predictive skill

Actual Model skill, T2m

- □ ECMWF better, especially at week 3-4
- □ Climate model developed to capture teleconnections

Signal-to-noise "paradox"

- RCP= ACC_actual/ACC_perfect, here difference
- RCP=0; actual predictability reaches predictability limit
- ECMWF exhibit regions where actual skill is higher than potential skill
 - sign of signal-to-noise paradox
- Intrinsic predictability of CESM2 is higher than ECMWF

Spread/Error for hindcasts, DJF

Signal-to-noise "paradox", weeks 3-4, DJF

lead = 15 lead = 15lead = 15 100 300 200 100 200 300 0 Ó 100 300 ó 200 lon lon lon

ECMWF

Actual Model skill, T2m, DJF

Ranked probability score of tercile forecasts

Skill conditioned on PNA, week 3-4

NCAR | UCAR |

Skill during positive and negative PNA, week 3-4

Skill during ENSO, week 3-4

Skill conditioned on ENSO, week 3-4

