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What is amplified warming over tropical land?

Summer mean warming (relative to global mean)

Hot tail warming (relative to local mean)

Duan et al., GRL, 2020
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Land warms more than ocean;
Dry land warms more than moist land.

(Joshi et al., 2008, 2013; Bryne & O’Gorman et al., 2013, 2018...)

Extreme hot days warm more than the average days.

(Fischer et al., 2007, Seneviratne et al., 2013; Berg et al.,
2014; Donat et al., 2017; Vogel et al., 2017; Duan et al., 2020;
Dirmeyer et al., 2021...)



Explanation 1: atmospheric dynamics perspective

AMSE c,AT L Ag

The “QE—WTG” framework

(1) Weak temperature gradient (WTG) + Quasi-equilibrium (QE) (2) Moisture constraint

AMSEL = AMSE? Agh = yAq?

Agt < Ag?, therefore ATF > ATY

(Bryne & O’Gorman, 2013, 2018; Bryne, 2021)



Explanation 2: surface flux perspective

AR, R ASH ALH
PBL top
o, Soll dries/plants’ physiology changes (stomata close),
. LH L H decreases,
SH “surface flux partitions towards SH”,

warming is amplified.

net

Land surface

(Fischer et al., 2007, Seneviratne et al., 2013; Berg et al., 2014; Donat et
al., 2017; Vogel et al., 2017; Duan et al., 2020; Dirmeyer et al., 2021...)



Temporal variability over land is complicated: SM limited; ET—SM is nonlinear

Latent heat flux [W/m?2]

LH—SM relationship at a given location

Conducive to substantial ASM
-

Temperature feedback

Shmwﬂ
Soil moisture [kg/mZ2]

Dry days Wet days

Water limited Energy limited

An example grid cell in southern Africa
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warm season, GFDL-ESM2M

Duan et al., GRL, under review



Spatial heterogeneity across land is large

Percentile of climatological warm-season Aridity Index
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An effective way to examine the spatiotemporal distribution of key variables over land

The SM/AIl phase space
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An effective way to examine the spatiotemporal distribution of key variables over land

AMSE The SM/AI phase space
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Uniform AMSE holds in wet conditions, not dry conditions

CMIP6 Multi-model mean
AMSE A: 4xCO2 - piControl
normalized by tropical mean ocean warming into /K
x-axis: daily timescale
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It is hard to provide an “accurate” prediction for AT in non-convective conditions, e.g., deserts.

These dry conditions warm the most in AT.



general T/q partition - Drier gets Warmer

AMSE c,AT + L Ag

- 4.0

"
[k)/kg/K]

|
W
(@)

- 3.4

& Percentile of SM .. & Percentile of SM . ' Percentile of SM



Percentile of Al

)ective manifests strongly in the transitional regime
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Percentile of Al

pective manifests strongly in the transitional regime

AR ASH + ALW,,, ALH
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A general correspondence between the two perspectives

Atmospheric: AMSE = c,AT L Aq
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A general correspondence between the two perspectives

Atmospheric: AMSE = c,AT L Aq
- 4.4 \-18 |- 34
B 4.2 ....... ] 1.7 ] 3.2
a0 e “3% e« General principle on T/q
¥ = 15¥ = 28¥ t.tion'
-3.8% -1.42 -2.69 partl N
L -, ) not explicitly coupled to
...................................... - 1.2 - 2.2 the surface.
- 34 -1.1 - 2.0
- 3.2 - 1.0 - 1.8
IR )N NS - SR NP\
@, Percentile of SM . @), Percentile of SM ..

* Process-based;
local and not coupled
to broader atmospheric
dynamics.

Percentile of Al

" Percentile of SM (& Percentile of SM (" Percentile of SM —



A general correspondence between the two, with a discrepancy in moistening

Atmospheric: AMSE = c,AT L Aq
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A note for RH:

L Aq ARH

* RH is often regarded as an
indicator for atmospheric
dryness, but depends on
both g and 1.

[%/K]

0 Ppercentile of SM e Percentile of SM ..

e ARH is associated with
ASM and ALH.
=(Temperature feedback is ASH ALH ASM

important, but hard to n
claim the causal chain.)
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Climatological dryness vs changes in dryness

Atmospheric: Surface:

- . L O
Moisture constraint:  Ag™ = yAgq Emphasizes soil drying/changes in plants’
physiology and changes in surface-flux partition

y =q"/q°

determined by the base-climate
dryness only



Define a partition factor to relate the T component to the total

Atmospheric:
MSE —gz=¢, T+ L g =yc,I

Surface:

R, — G =SH+LH = WSH




Decompose climate change: base partition + changes in partition

A heric: " . "
tmospheric base partition changes in partition

AMSE = A(yc,T) ~ yc,AT+c,TAy

Surface:

AR, ~ A(WSH) ~ YASH + SHAY
~ WkAT+SHAY

(parameterize ASH =~ «AT)



Relate AT to (1) changes in total, (2) sensitivity (base partition), (3) changes in partition

Surface: Atmospheric:

AR, SHAY) ATA

!

Changes in partition

ot

Sensitivity: base-climate dryness



Warming magnitude against base-climate sensitivity and changes in partition
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Larger base-climate sensitivity, larger warming magnitude

Surface:
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Changes in partition in intermediate conditions further enhances/dampens warming

Surface:
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Similar relationship with the base-climate sensitivity, different in the change of partition

Surface:

Warming magnitude
AT [ [AT], [K/K]
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Atmospheric:
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Summary sqduan@ucla.edu

* The two perspectives show a general correspondence (i.e., elements in the atmospheric argument carry
strong surface information), with a discrepancy in moistening resulting from atmospheric sources and sinks
for g besides ET.

* We show base-climate dryness largely explains the warming magnitude; during intermediate conditions,

changes in the partition between warming and moistening further generate variability in the warming
magnitude.

Duan, S. Q., McKinnon, K. A., & Simpson, I. R. Two perspectives on amplified warming over tropical land, JCLI/, under review.

Thanks!







