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Prediction of transition from negative to positive IPO around 2015-2016
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Off-equatorial ocean heat content in the
tropical western Pacific appears to provide
the conditions for ENSO events to trigger an

IPO transition

(Meehl, Hu, Teng, 2016, Nature Communications)
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Composite IPO transitions from CESM1,

1800 year control run (47 cases of IPO
negative to positive transition; 51 cases of IPO
positive to negative transition)

Off-equatorial ocean heat content appears to
reach a necessary (but not sufficient)
threshold (~0.5 standard deviations) prior to
an ENSO event that provides the sufficient
condition for a transition

In the year of an IPO transition from negative
to positive, there is a better chance of an El
Niho event

(and better chance of a La Niiia event from
positive to negative IPO)

(Meehl, G.A., H. Teng, A. Capotondi, and A. Hu, 2021: The role of
interannual ENSO events in decadal timescale transitions of the
Interdecadal Pacific Oscillation, Climate Dynamics, doi:
10.1007/s00382-021-05784-y)
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With the 2015-2016 El Nino, there appeared to be a sufficient
trigger to transition from negative to positive IPO, and
off-equatorial western Pacific ocean heat content declined as
expected for such a transition...
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...but then something happened around 2019-2020 and turned around
the declines of off-equatorial Western Pacific ocean heat content, and
rate of global warming decreased, all signs of a return to negative IPO
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Disastrous bushfires in Australia in late
2019-early 2020 produced tremendous
amounts of smoke, and that smoke was
advected across the Pacific

Animation of black carbon transport from Nov. 1 to
Nov. 18, 2019

https://www.technologyreview.com/2020/01/06/131012/this-nasa-satellite-image-show
s-the-extent-of-australias-devastating-wildfires/
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Did the smoke from the Australian bushfires in 2019-2020 disrupt the IPO transition
from negative to positive that appeared to have occurred around 2015, and
externally force a three year La Nina and return the IPO to a negative phase?

Perform two sets of initialized hindcasts with CESM2

Both initialized in August 2019, and run for three years to July, 2022;

Each has 30 ensemble members (results here shown for annual averages, August to July, computed as
differences “smoke minus no-smoke” to see what affects the smoke had on the prediction); the model
includes an aerosol scheme whereby CCN and cloud albedo can be affected by smoke aerosols

--One is run without Australian bushfire smoke emissions (standard “SMYLE”, or “no-smoke” simulation
with CESM2);

--One is run with the observed Australian bushfire smoke emissions from GFED (“AUFIRE” or “smoke”,
otherwise the same as the standard SMYLE experiment)



Smoke minus no-smoke: aerosols cloud albedo
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These SST anomalies persist Smoke minus no-smoke (Aug-July)
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Smoke minus no-smoke (Aug-July) observations (Aug-July)

2019-2020 Precip anomaly (mm/day) g%sservations Precip anomaly ' (mm/day) (GPCP)
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Smoke minus no-smoke: u-component wind stress
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Ocean heat content Smoke minus no-smoke
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Summary

The IPO appeared to transition from negative to positive around 2015, triggered by the 2015-2016 El Nifio event, with a
decrease in off-equatorial western Pacific ocean heat content as in previous transitions

But around 2019, coincident with the Australian bushfires, there was the start of a three year La Nifia, and the IPO
seemed to transition back to negative

The processes:

smoke advected across the Pacific mm) clouds brighten off the South American coast mm) reduced incoming solar at
the surfacemm®) SSTs cool ) South Pacific High strengthens mm)trade winds strengthen mm) cooler water advected
into the equatorial eastern Pacific Bjerlmm) feedbacks spread the cooler water across the Pacific reduses)
SSTs and precipitation in the western equatorial Pacific SSTE®d precipitation increase over the Maritime
Continent Walk@irculation strengthens

The feedbacks:
1. Walker Circulation strengthens mm) South Pacific High becomes strongermm® ) northward surface wind stress in
southeast Pacific increasesE™ ) even more cool water advected into the equatorial Pacific, and so on

2. negative convective heating anomalies in the western equatorial Pacific produce a Gill-type responsemss) produce
off-equatorial westerly wind stress anomaliesmm) Ekman pumping near 15N and 155 mm) increased off-equatorial

western Pacific ocean heat content mm) sustained negative IPO mm) reduced rate of global warming

In past negative IPO events, they end with a strong El Nifo event triggering a transition back to positive IPO...
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negative IPO:

persistent easterly anomaly equatorial surface winds and negative
SST precipitation and convective heating anomalies in the western
eq. Pacific

--Gill-type response to the northwest and southwest with easterly
wind stress anomalies near 20°N and 15°S

-- wind stress curl anomalies (negative near 15°N, positive near 10°
S) and consequent negative vertical motions in the upper ocean
produce accumulation of heat content and convergence of warmer
water into the off-equatorial western Pacific.

--stronger Trades in eastern tropical Pacific from anomalous high
pressure in North and South Pacific from negative convective
heating anomalies in equatorial central Pacific produce ocean
Rossby waves that propagate slowly to the west, and NPMM and
SPMM-type SST patterns



As clouds brighten in the southeastern Pacific, net solar at the surface is reduced, and cooler SSTs are advected into the
equatorial eastern Pacific, and then all the way across the equatorial Pacific from 2019-2020, an externally forced La Nina?
Smoke minus no-smoke: net solar Smoke minus no-smoke: surface temperature
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There are a number of ways to deal with bias and drift when computing anomalies
to evaluate skill of initialized multi-year hindcasts:

14.8
1. Forecast year differences from a model climatology (e.g. Doblas-Reyes, et al :

2013: Boer et al., 2016 for DCPP) 144 —
(trends in bias and drift introduce enhanced skill estimates for earlier and later in ]
the hindcast period)

yri yr2 yr3 yr4 yr5 yré yr7 yr8 yr9 yrio

14.0
O
o

13.6
2. Bias-adjusted lead year differences from the previous 15 year average from

observations (e.g. Meehl et al., 2016) (unrealistic skill can be introduced whenlo 45, ;
frequency variability in the observations is large compared to the hindcasts on ]

——NCEP/NCAR reanal lysis

timescales greater than 15 years) 128
1960 1980 2000 2020
3. Forecast year differences from the previous 15 year average of model initial
states (Meehl et al., 2021)
(somewhat lower skill compared to each of the previous methods, but less
difficulties with long term trends in the model climatology, and no unrealistic (Meehl, Teng, Smith, Yeager, Merryfield,
situational skill from using observations as a reference) Doblas-Reyes, and Glanville, 2021, Cli. Dyn.)

4. Form anomalies from a sensitivity hindcast experiment for the same time
period as a reference hindcast

(unambiguously removes bias and drift, but can only be used in a sensitivity

experiment context)



