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Fluctuation Dissipation Theorem (FDT)

• The FDT states that the response of a dynamical system to a forcing 
can be estimated from the statistics of internal fluctuations.
• The climate is one such system where the FDT can be applied:

Gritsun and Branstator, 2007



Fluctuation Dissipation Theorem (FDT)

• One common formulation of FDT for climate is in terms of a Linear 
Response Function 𝑳 (e.g., Cionni et al., 2004, Gritsun and Branstator, 
2007, Liu et al., 2018):

𝛿𝒚 𝑡 = 𝑳𝛿𝒇 𝑡
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Limitations of classic FDT

• Applying FDT typically assumes:
1. Dimension reduction
2. Near-Gaussian statistics
3. Linear responses
4. Large reference internal variability datasets

• Can we loosen some of these requirements using AI?



AI Model Design
• We developed a spherical Multilayer Perceptron (MLP) model
• Maps monthly mean radiation anomalies to select climate variables 

at different time lags
• Data is regridded to spherical icosahedral grid to avoid dealing with 

grid area variations
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CESM2 LE Training data

• Large amount of internal 
variability information is required 
to train this AI model
• We use data from the CESM2 

smoothed biomass burning 
historical simulations
• Data is preprocessed by removing 

the ensemble mean for each grid 
point and month in the time 
series



Applying FDT with AI models

• We train the AI model on at a range of time lags 𝜏
• The AI models (𝐴%) are regression models that map from an input field 𝑥& to the 

average of possible trajectories of 𝑦& for a given lag:

𝐴! 𝑥" : 𝑥"(𝑡) → 𝑦"(𝑡 + 𝜏)
• To project a climate response 𝑦⃗(𝑡) , we integrate over the AI projections, which 

are the average of emulated responses to 𝑁 different input fields 𝑥& :
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• Where 𝜏'() = 60 months



Test case: Marine Cloud Brightening
• Marine Cloud Brightening 

(MCB) is a proposed solar 
radiation geoengineering 
technology
• Sea salt aerosol is injected into 

marine boundary layer clouds 
to increase their albedo
• Wide range of possible MCB 

forcing patterns, which are not 
practical to assess with ESMs



Regional Marine Cloud Brightening

• We impose MCB in CESM2 by 
setting cloud droplet number 
concentrations to 600cm-3 in 
three regions

• A constant 𝛿𝑓 for the AI model is 
calculated with radiative flux 
anomalies (ERF) from fixed-SST 
simulations

Perturbations applied to AI model



Spatial patterns of AI-FDT projections

• We compare the CESM2 
“true” response (left) to 
the AI model response 
(right)
• The AI model 

overestimates the 
magnitude of the 
response, but correctly 
projects the pattern in 
most regions



Projected response to MCB in different 
regions
• Larger discrepancies between 

CESM2 and AI for individual 
regions
• Most of the total pattern is the 

result of La Nina-like response 
to SEP forcing
• AI expects stronger La Nina 

response to NEP than CESM2
• Non-ENSO signals are also 

captured (SEA cooling -> 
Amazon warming)



Conclusions

• We have developed an ad hoc implementation of FDT using 
an AI model to generate the response function
• The large data pool provided by the CESM2 LE is crucial for 

our AI model training
• Our AI-FDT model skilfully projects climate response pattern

to MCB, but overestimates the magnitude of the response
• AI-FDT could be a useful tool for generating first look 

estimates of climate responses to forcing
• E.g., for scenario development



Future Work
1. Uncertainty estimation:
• Inter-ESM variability uncertainty : Train on different ESM 

Large Ensembles (SMILEs)
• Inter-ESM forcing uncertainty : Apply ERF fields estimated 

from different ESMs
2. Assess AI-FDT projections of greenhouse gas and stratospheric 

aerosol injection (SAI) forcing
3. Optimizing MCB or SAI forcing patterns to produce specific  

climate responses in target regions (e.g., key regions for 
tipping points)



AI FDT projection procedure

• For each time lag 𝜏:
• Select N sample radiation anomaly fields 𝑥& from a preprocessed dataset
• Run AI (𝐴%) on the N input field to obtain N control projected output fields 𝑦&

for each lag 𝜏
• Perturb each of the input radiation anomaly fields by 𝛿𝑓 , 𝑥&* = 𝑥& + 𝛿𝑓
• Run AI on the N perturbed input fields to obtain N perturbed output fields 𝑦&

for each lag 𝜏
• Compute average across the N control and perturbed output fields

• Compute Simpson’s integration over the time lags 𝜏 at each grid point





piAnthro effect



Global Mean AI lagged 
responses
• AI model suggests a response time scale 

to the MCB perturbation of 3-years
• Temperature response has not 

converged to 0 after 60 months, 
possibly suggesting longer time scales 
are required.



AI Emulation performance

• To test the AI performance, we:
• Run AI model with CESM2 internal 

variability as input
• Compare AI model output (tas, pr, 

ps) to the original CESM2 variables 
at the corresponding lag

• The AI model performs well in 
low latitude oceanic regions, but 
poorly at high latitudes and over 
land



AI Emulation performance

• AI model emulation has skill 
above noise out to ~36 months
• Substantially higher skill in 

spatial correlation for 
precipitation than surface 
temperature/pressure



Comparison between AI models


