Understanding the Drivers of Atlantic Multidecadal Variability using a Stochastic Model Hierarchy

Glenn Liu¹, Young-Oh Kwon², Claude Frankignoul², Jian Lu³ 2023 CESM Climate Variability and Change Working Group Meeting

Published in *Journal of Climate* Vol. 34, Issue 4 https://doi.org/10.1175/JCLI-D-22-0309.1

¹MIT-WHOI Joint Program, ²Woods Hole Oceanographic Institution, ³Pacific Northwest National Laboratory

Atlantic Multidecadal Variability (AMV)

What is the relative importance of oceanic and atmospheric dynamics for AMV?

Ocean (Atlantic Meridional Overturning Circulation, AMOC)

Atmosphere (North Atlantic Oscillation, NAO)

Hierarchies with Slab Ocean Models

Source: Dommengat et al. 2012

– Slab Ocean Temperature Equation –

$$\rho C_p h \frac{dT}{dt} = Q_{net} + Q_{flux}$$

No interactive ocean dynamics

- Climatological Flux Correction (Q_{flux})
- Fixed thickness *h* (in time)

Atmosphere (North Atlantic Oscillation, NAO)

Slab vs. Fully-Coupled Models AMV Spatial Pattern¹

• Is ocean circulation necessary to generate AMV?¹

Midlatitude North Atlantic SST Power Spectra³

CESM

- Slab has higher SST variance compared to fully-coupled models^{2,3}
 - Ocean dynamics damp SST variability, particularly at low frequencies³

Need for transparent, process-based understanding of ocean contributions to AMV

¹Clement et al. 2015, ²Murphy et al. 2021, ³Patrizio et al. 2021

The Stochastic Climate Model

Two-time scale paradigm (Hasselmann 1976)

- Atmospheric heat flux forcing (fast)
- Ocean/Mixed Layer Temps (slow)

The Stochastic Climate Model

Q1

How does seasonal variation in damping, forcing, and mixed-layer depth impact SST variability?

The Entrainment Mechanism

The Stochastic Climate Model

Estimating Stochastic Model Parameters from CESM1

Forcing (*F*')

Heat Flux Feedback (λ_a)

Mixed Layer-Depth (h)

EOF Analysis on F' (= $Q'_{net} + \lambda_a T'$) in CESM for each month

$$F'(x, y, t) = \sum_{n=1}^{k} \alpha(x, y, m, n) N_{(0,1)}(n, t)$$

(d'Coëtlogon and Frankignoul 2002)

 $\lambda_a = \frac{cov[Q'(t), T'(t-1)]}{cov[T'(t), T'(t-1)]}$

Statistical Approach

Seasonal Climatological Cycle from CESM1-FULL

Temporally Random

- Maintain Spatial Coherence
- Monthly varying amplitude

Estimating Stochastic Model Parameters from CESM1

Forcing (F')

Heat Flux Feedback (λ_a)

Mixed Layer-Depth (h)

EOF Analysis on F' (= $Q'_{net} + \lambda_a T'$) in CESM for each month

Statistical Approach (d'Coëtlogon and Frankignoul 2002)

Seasonal Climatological

 $F'(x,y,t) = \sum \alpha(x,y,m,n) N_{(0,1)}(n,t)$

$$\lambda_a = \frac{cov[Q'(t), T'(t-1)]}{cov[T'(t), T'(t-1)]}$$

	•
Cycle from	CFSM1-FUI
eyere norm	

Configuration/Dataset Name	Abbreviation	Years Used	Total Months of Data
Pre-industrial Control	CESM1-FULL	400 - 2200	21,612
Pre-industrial Control (Slab Ocean)	CESM1-SLAB	200 - 1100	10,812

Key Questions

How does seasonal variation in the model parameters impact SST variability?

3

What is the role of **entrainment** in SST variability?

Can spatially-coherent, temporally random atmospheric forcing reproduce the AMV Pattern in CESM1?

11

Case Study in the Subpolar Gyre (50°N, 30°W)

- 1) Location of maximum AMV loading
- 2) Away from regions of advection
- 3) Typical seasonal variation in parameters

Each stochastic model configuration is integrated for 10,000 years at 50°N, 30°W....

SST Persistence

SST Persistence

Vary **Damping** and **Forcing**

Vary MLD

Seasonal MLD variations alone cannot capture SST persistence in CESM-FULL

Adding entrainment captures the timing and amplitude of re-emergence in the SPG test

point

Interannual-to-Multidecadal Variability

The non-entraining stochastic model and CESM-SLAB have greater SST variance than CESM-FULL

Adding MLD Variation

Adding variable MLD damps SST variance, but doesn't alter the spectrum's shape

Adding Entrainment

Entrainment *damps SST variability*, particularly at *interannual-to-decadal timescales*

The Role of Entrainment in Other Regions

The Role of Entrainment in Other Regions

SPG: Subpolar Gyre; STGw,e: Subtropical Gyre West, East

<u>Next Steps</u>: Investigating dynamics behind these regional differences

The AMV Spatial Pattern

Run stochastic model at each point for 10,000 years, then compute the extratropical AMV Pattern (°C σ_{AMV}^{-1})

- Stochastic model captures major features of the canonical horseshoe pattern
- The stochastic model underestimates the AMV amplitude

*stippled regions excluded due to insignificant heat flux feedback estimation

The AMV Spatial Pattern

Run stochastic model at each point for 10,000 years, then compute the extratropical AMV Pattern (°C σ_{AMV}^{-1})

*stippled regions excluded due to insignificant heat flux feedback estimation

(Level)	Stochastic Mo	del Hierarchy		↑	
(5)	Add Entrainment $w_e(m), \ \lambda(m) = \ \lambda_a + w_e/h$			CESM-FULL	
(4)	Vary Mixed $h(m), \ \lambda_a(m)$	Layer Depth $(m), \alpha(m)$			
(3)	Vary Damping and Forcing (Slab) $\lambda_a(m), lpha(m)$			CESM-SLAB	
(2)	Vary Damping $\lambda_a(m)$	Vary Forcing $\alpha(m)$	E	ntraining	
(1)	Fixed I $\overline{h}, \overline{\lambda}_a$	nputs $\overline{a}, \overline{\alpha},$		ncreasing omplexity	

• The SLAB AMV amplitude is larger, and the detail of the pattern differs

The AMV Spatial Pattern

Run stochastic model at each point for 10,000 years, then compute the extratropical AMV Pattern (°C σ_{AMV}^{-1})

*stippled regions excluded due to insignificant heat flux feedback estimation

(Level)	Stochastic Model Hierarch	ייי <u>אי</u>
(5)	Add Entrainment $w_e(m), \ \lambda(m) = \ \lambda_a + w_e/h$	CESM-FULL
(4)	Vary Mixed Layer Depth $h(m), \ \lambda_a(m), \ \alpha(m)$	
(3)	Vary Damping and Forcing (Sl $\lambda_a(m),lpha(m)$	CESM-SLAB
(2)	Vary DampingVary Force $\lambda_a(m)$ $\alpha(m)$	Entraining
(1)	Fixed Inputs $\overline{h}, \overline{\lambda_a}, \overline{\alpha},$	Increasing Complexity

- Including entrainment and seasonal MLD variation damps SST too much.
- The SPG maxima is shifted too far to the northeast
- The missing dynamics beyond entrainment are likely needed to reconcile these differences.

