Exploring the non-stationarity of coastal sea level probability distributions

- Fabrizio Falasca,
- Andrew Brettin, Laure Zanna,
- Stephen Griffies, Jianjun Yin, Ming Zhao
 - Courant Institute of Mathematical Sciences (NYU)

NYU COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Introduction and motivations

- Quantifying trends in Global and regional Sea level
- Climate change (natural or anthropogenic) involves changes in probability distributions

Methodology

Quantifying source of change in Probability Distributions from time series

Results

• Changes in coastal sea level Probability Distributions across observation and GFDL model

Conclusions

Ongoing and future work

Outline

Quantifying trends in sea level rise

Global Mean Sea Level

Average rate of 1.35 mm/yr

Motivations

Regional Sea Level Period 1993-2014

Ablain et al. (2020)

Quantifying "trends" in sea level time series

- Usually: linear regression
 - It allows to quantify changes in the "mean" of the distribution
 - It ignores higher order changes
- Studies on extremes:
 - Extreme value theory: often assuming that the main changes come from the mean

Motivations

Quantifying "trends" in sea level time series

- Usually: linear regression
 - It allows to quantify changes in the "mean" of the distribution
 - It ignores higher order changes
- Studies on extremes:
 - Extreme value theory: often assuming that the main changes come from the mean

Motivations

Some variable

Changes in Probability distributions

Some variable

Quantile regression $\beta_0(q)$

with $\rho_p(u) = p \max(u,0) + (1-p) \max(-u,0)$; with $p \in (0,1)$

$$2.00 \quad 2.25 \quad 2.50 \quad 2.75 \quad 3.$$

$$t$$

$$\arg \min_{q_p),\beta_1(q_p) \in \mathbb{R}} \sum_{i=1}^n \rho_p(s_i - \beta_0(q_p) - \beta_1(q_p) t_i)$$

Slope in the median: $q_{p=0.5}$

• All quantiles slopes $\beta_1(q_p) > 0$: the mean of the distribution is increasing

- All quantiles slopes $\beta_1(q_p) > 0$: the mean of the distribution is increasing
- The variance seems to be changing too:
 - Changes are symmetric over the median $q_{0.5}$
 - Larger quantiles are changing faster
 - Smaller quantiles are changing slower

- All quantiles slopes $\beta_1(q_p) > 0$: the mean of the distribution is increasing
- The variance seems to be changing too:
 - Changes are symmetric over the median $q_{0.5}$
 - Larger quantiles are changing faster
 - Smaller quantiles are changing slower
- What about other moments?
- How to deal with N (N > > 1) time series?
- Statistical significance?

- All quantiles slopes $\beta_1(q_p) > 0$: the mean of the distribution is increasing
- The variance seems to be changing too:
 - Changes are symmetric over the median $q_{0.5}$
 - Larger quantiles are changing faster
 - Smaller quantiles are changing slower
- What about other moments?
- How to deal with N (N > > 1) time series?
- Statistical significance?

Strategy

Construct a framework to link changes in quantiles and moments of a distribution.

McKinnon, K et al. The changing shape of NH summer temperature distributions, JGR (2016)

(i.e., Median: $q_{p=0.5}$)

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

(i.e., Median:
$$q_{p=0.5}$$
)
 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$
Focus on Linear
Changes
 $\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$

(i.e., Median:
$$q_{p=0.5}$$
)

$$q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$$
Focus on Linear
Changes

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$$

Assuming relative small deviation from Gaussianity

$$\beta_1(q_p) \sim \frac{dq_p}{dt} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{\partial q_p}{\partial m_i} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{dm_i}{dt} b_i(p)$$

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

(i.e., Median:
$$q_{p=0.5}$$
)
 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$
Focus on Linear
Changes
 $\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$

Assuming relative small deviation from Gaussianity

$$\beta_1(q_p) \sim \frac{dq_p}{dt} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{\partial q_p}{\partial m_i} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} b_i(p)$$

Computed by quantile regression

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

Falasca et al. Exploring the non-stationarity of Coastal sea level probability distributions arXiv:2211.04608

(i.e., Median:
$$q_{p=0.5}$$
)
 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$
Focus on Linear
Changes
 $\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$

Assuming relative small deviation from Gaussianity

$$\beta_1(q_p) \sim \frac{dq_p}{dt} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{\partial q_p}{\partial m_i} \bigg|_{m_*} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{dm_i}{dt} b_i(p)$$

Polynomials $b_i(p)$ quantify how quantiles of a distribution change when shifting its moments <u>one at a time</u>

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

Falasca et al. Exploring the non-stationarity of Coastal sea level probability distributions arXiv:2211.04608

(i.e., Median: $q_{p=0.5}$) $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$ $\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt}$ Focus on Linear Changes

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

$$+\frac{\partial q_p}{\partial m_3}\frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4}\frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i}\frac{dm_i}{dt}$$

Falasca et al. Exploring the non-stationarity of Coastal sea level probability distributions arXiv:2211.04608

Measuring slopes $\beta_1(q_p)$ of quantiles q_p for $p \in [0.05, 0.95]$ every $\delta p = 0.05$)

Measuring slopes $\beta_1(q_p)$ of quantiles q_p for $p \in [0.05, 0.95]$ every $\delta p = 0.05$)

Application to Coastal Sea Level Rise

Sea level decomposition

$$\Delta \eta = \eta_{dyn} + \eta_{ib} = \frac{\Delta P_b}{\rho_0 g} - \frac{\Delta P_a}{\rho_0 g} - \frac{1}{\rho_0} \int_{-H}^{\eta} \Delta \rho \, \mathrm{d}z$$

Griffies S.M. and Greatbatch R.J. Ocean Modeling (2012)

Where:

•
$$\eta_{dyn} = \frac{\Delta P_b}{\rho_0 g} - \frac{1}{\rho_0} \int_{-H}^{\eta} \Delta \rho \, dz$$

• $\eta_{ib} = -\frac{\Delta P_a}{\rho_0 g}$

Sea level decomposition

$$\Delta \eta = \eta_{dyn} + \eta_{ib} = \frac{\Delta P_b}{\rho_0 g} - \frac{\Delta P_a}{\rho_0 g} - \frac{1}{\rho_0} \int_{-H}^{\eta} \Delta \rho \, \mathrm{d}z$$

Griffies S.M. and Greatbatch R.J. Ocean Modeling (2012)

Changes in water column mass:

- Convergence of mass via ocean currents
- Water crossing the ocean free surface

Local steric effects:

- Changes in sea level driven by
- changes in density

Sea level decomposition

$$\Delta \eta = \eta_{dyn} + \eta_{ib} = \frac{\Delta P_b}{\rho_0 g} - \frac{\Delta P_a}{\rho_0 g} - \frac{1}{\rho_0} \int_{-H}^{\eta} \Delta \rho \, \mathrm{d}z$$

Griffies S.M. and Greatbatch R.J. Ocean Modeling (2012)

Changes in water column mass:

- Convergence of mass via ocean currents
- Water crossing the ocean free surface

Local steric effects:

- Changes in sea level driven by
- changes in density

Inverse Barometer:

Changes in sea level driven by local changes in sea level pressure

Daily sea level Historical run: 1970-2014

Mean 0° 0

GFDL-CM4: Historical

O: significant

GFDL-CM4: 1pctCO₂ Experiment

шш

Mean

Kurtosis

90°W

180°

180°

(g) η^{dyn}

45°N

0°|

45°S

0°

0°

(b) $\eta^{dyn} + \eta^{ib}$

45°N

O: significant

1pctCO₂ Experiment

- Emergence of changes in shapes of the distribution
- Changes in variance and skewness are already present in η_{dvn}
- Changes in higher order moments are always amplified when adding η_{ih}

GFDL-CM4: 1pctCO₂ Experiment

GFDL-CM4: 1pctCO₂ Experiment

- moments of a distribution.
 - sources of changes in distributions.
- mean of the distribution. The CM4 model agrees with observations in the historical period.
- In the 1%/yr CO2 run we identify the emergence of changes in higher order moments. included
- ocean across different models and scenarios and (b) application across different variables.

Conclusions

• Proposal of a general statistical model to study (significant) changes in both quantiles and

• This is done through projection over suitable orthogonal polynomials: the methods captures *independent*

• Changes in daily coastal sea level in observations can be explained by solely by a shift in the

• Changes are already present in the dynamic sea level and get always amplified when the inverse barometer is

• Next steps: adopting this methodology to study changes in (a) sea level distributions in open

Thanks

Falasca, F. et al. Exploring the non-stationarity of coastal sea level distributions; arXiv:2211.04608

Backups

GFDL-CM4: 1pctCO₂ Experiment O: significant (b) $\eta^{dyn} + \eta^{ib}$ Mean 1pctCO₂ Experiment

90°W

Kurtosis

90°W

180°

180°

(g) η^{dyn}

0°

45°N

45°S

0°

0°

yr⁻¹

0

-1

Skewness

(f) $\eta^{dyn} + \eta^{ib}$

- Emergence of changes in shapes of the distribution
- Changes in variance and skewness are already present in η_{dyn}
- Changes in higher order moments are always amplified when adding η_{ih}

Shifts in Kurtosis only in the inverse barometer component. Possibly in agreement with Priestly and Catto (2022) who observed a decrease in Cyclone numbers in CMIP6 projections.

GFDL-CM4: 1pctCO₂ Experiment O: significant (b) $\eta^{dyn} + \eta^{ib}$ Mean 1pctCO₂ Experiment 45°N

45°S

45°N

45°S

180°

180°

(d) $\eta^{dyn} + \eta^{ib}$

90°W

0°

45°N

45°S

0°

180°

yr⁻¹

0

-1

- Emergence of changes in shapes of the distribution
- Changes in variance and skewness are already present in η_{dvn}
- Changes in higher order moments are always amplified when adding η_{ih}

Large increase in Skewness already present in dynamic sea level only. Consistent with an increase in frequency of intense westerly winds in that region. Pinto et al. (2007)

GFDL-CM4: 1pctCO₂ Experiment

0°

-1.0

90°W

Kurtosis

90°W

180°

180°

(g) η^{dyn}

45°N

0°–

45°S

٥°

0°

yr⁻¹

0

-1

Skewness

(f) $\eta^{dyn} + \eta^{ib}$

- Emergence of changes in shapes of the distribution
- Changes in variance and skewness are already present in η_{dvn}
- Changes in higher order moments are always amplified when adding η_{ih}

Shifts in Skewness and Kurtosis in the Mediterranean. Possibly pointing to a decrease in Medicanes as suggested in Gonzáles-Aléman et al. (2019)

(i.e., Median: $q_{p=0.5}$)

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

We focus on linear changes:

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$$

Cornish-Fisher Expansion

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

$$q_p \sim m_1 + \sqrt{m_2 w}$$
$$w = z_p + (z_p^2 - 1)\frac{m_3}{6} + (z_p^3 - 3z_p)\frac{m_4}{24} - (2z_p^3 - 5z_p)\frac{m_4}{24}$$

(i.e., Median: $q_{p=0.5}$)

We focus on linear changes:

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$$

Cornish-Fisher Expansion

Cornish, E.A. & Fisher, R.A.; Revue De L'institut International De Statistique (1937)

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

(i.e., Median: $q_{p=0.5}$)

We focus on linear changes:

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt} + \frac{\partial q_p}{\partial m_3} \frac{dm_3}{dt} + \frac{\partial q_p}{\partial m_4} \frac{dm_4}{dt} = \sum_{i=1}^4 \frac{\partial q_p}{\partial m_i} \frac{dm_i}{dt}$$

$$\begin{split} &\frac{\partial q_p}{\partial m_1} = 1\\ &\frac{\partial q_p}{\partial m_2} = \frac{1}{2} \frac{1}{\sqrt{m_2}} [z_p + \frac{1}{6} (z_p^2 - 1) \, m_3 - \frac{1}{36} (2z_p^3 - 5z_p) \, m_3^2 + \frac{1}{24} (z_p^3 - 3z_p) \, m_4] \\ &\frac{\partial q_p}{\partial m_3} = \sqrt{m_2} \, [\frac{1}{6} (z_p^2 - 1) - \frac{1}{18} (2z_p^3 - 5z_p) \, m_3] \\ &\frac{\partial q_p}{\partial m_4} = \frac{\sqrt{m_2}}{24} (z_p^3 - 3z_p) \end{split}$$

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

(i.e., Median: $q_{p=0.5}$)

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

We focus on linear changes:

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt}$$

$$b_{1}(p) = \frac{\partial q_{p}}{\partial m_{1}}|_{m_{*}} = 1$$

$$b_{2}(p) = \frac{\partial q_{p}}{\partial m_{2}}|_{m_{*}} = \frac{z_{p}}{2}$$

$$b_{3}(p) = \frac{\partial q_{p}}{\partial m_{3}}|_{m_{*}} = \frac{1}{6}(z_{p}^{2} - 1)$$

$$-d_{0}(p) = \frac{\partial q_{p}}{\partial m_{4}}|_{m_{*}} = \frac{1}{24}(z_{p}^{3} - 3z_{p})$$

(i.e., Median: $q_{p=0.5}$)

We focus on linear changes:

$$\frac{dq_p}{dt} = \frac{\partial q_p}{\partial m_1} \frac{dm_1}{dt} + \frac{\partial q_p}{\partial m_2} \frac{dm_2}{dt}$$

 $\beta_1(q_p) \sim \frac{dq_p}{dt} \bigg|_{m_1} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{\partial q_p}{\partial m_i} \bigg|_{m_1} = \sum_{i=1}^4 \frac{dm_i}{dt} \frac{dm_i}{dt} b_i(p)$

 $q_p(t) = q_p(m_1(t), m_2(t), m_3(t), m_4(t))$

