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Motivations

Quantifying trends in sea level rise
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Motivations

Quantifying “trends” in sea level time series


• Usually: linear regression

•It allows to quantify changes in the “mean” of the distribution

•It ignores higher order changes


• Studies on extremes:

• Extreme value theory: often assuming 

  that the main changes come 

  from the mean
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Changes in Probability distributions

Some variable


PD
F


?

t

t + Δt?

? t + Δt?
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Exploring changes in quantiles and moments

Quantile regression 


with 

arg min
β0(qp),β1(qp)∈ℝ

n

∑
i=1

ρp(si − β0(qp) − β1(qp) ti)

ρp(u) = p max(u,0) + (1 − p) max(−u,0); with p ∈ (0,1)
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Exploring changes in quantiles and moments

•All quantiles slopes : the mean of 
the distribution is increasing


•The variance seems to be changing too:

•Changes are symmetric over the median 

•Larger quantiles are changing faster

•Smaller quantiles are changing slower


•What about other moments?

•How to deal with  ( ) time series?

•Statistical significance?


Strategy

Construct a framework to link changes in 
quantiles and moments of a distribution.


β1(qp) > 0

q0.5

N N > > 1

McKinnon, K et al. The changing shape of NH summer 
temperature distributions, JGR (2016)
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Application to Coastal Sea Level Rise



Tide gauges
Period: 1970-2017
Daily sea level

X: not significant
O: significant
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Changes in water column mass: 

•Convergence of mass via ocean currents

•Water crossing the ocean free surface

Local steric effects:

•Changes in sea level driven by 

changes in density

Inverse Barometer:

•Changes in sea level driven by local 

changes in sea level pressure

Griffies S.M. and Greatbatch R.J. Ocean Modeling (2012)



GFDL-CM4: Historical
Historical run: 1970-2014
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1pctCO2 Experiment


• Emergence of changes in shapes of 
the distribution
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already present in  


• Changes in higher order moments are 
always amplified when adding 
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GFDL-CM4: 1pctCO2 Experiment



Conclusions

• Proposal of a general statistical model to study (significant) changes in both quantiles and 
moments of a distribution. 


•This is done through projection over suitable orthogonal polynomials: the methods captures independent 
sources of changes in distributions.


• Changes in daily coastal sea level in observations can be explained by solely by a shift in the 
mean of the distribution. The CM4 model agrees with observations in the historical period.


• In the 1%/yr CO2 run we identify the emergence of changes in higher order moments.

•Changes are already present in the dynamic sea level and get always amplified when the inverse barometer is 
included


• Next steps: adopting this methodology to study changes in (a) sea level distributions in open 
ocean across different models and scenarios and (b) application across different variables.



Thanks

Falasca, F. et al. Exploring the non-stationarity of coastal 

sea level distributions; arXiv:2211.04608
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1pctCO2 Experiment


• Emergence of changes in shapes of 
the distribution


•Changes in variance and skewness are 
already present in  


• Changes in higher order moments are 
always amplified when adding 
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Shifts in Kurtosis only in the inverse 
barometer component. Possibly in 
agreement with Priestly and Catto 
(2022) who observed a decrease in 
Cyclone numbers in CMIP6 projections.
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1pctCO2 Experiment


• Emergence of changes in shapes of 
the distribution


•Changes in variance and skewness are 
already present in  


• Changes in higher order moments are 
always amplified when adding 

ηdyn

ηib

Shifts in Skewness and Kurtosis in the 
Mediterranean. Possibly pointing to a 
decrease in Medicanes as suggested in 
Gonzáles-Aléman et al. (2019)


GFDL-CM4: 1pctCO2 ExperimentDaily sea level O: significant
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