Atmospheric drivers of temporal variability in melt pond coverage \& allbedo:
 A model-observation synthesis

Melinda Webster ${ }^{1,4}$, Marika Holland ${ }^{2}$, Chris Polashenski ${ }^{3}$, \& Hannah Chapman-Dutton ${ }^{4}$
${ }^{1}$ University of Washington,
${ }^{2}$ National Center for Atmospheric Research,
${ }^{3}$ Cold Regions Research \& Engineering Laboratory,
${ }^{4}$ University of Alaska Fairbanks

Melt ponds

- Govern the surface albedo of Arctic sea ice.
- Knowing their areal extent is important...
- But knowing when they are present is equally important.
- Melt pond coverage can be highly temporally variable \rightarrow drainage, refreezing

Melt ponds

- Govern the surface albedo of Arctic sea ice.
- Knowing their areal extent is important...
- But knowing when they are present is equally important.
- Melt pond coverage can be highly temporally variable \rightarrow drainage, refreezing

MOSAiC had 2 refreezing events* (that we're aware of): ~June $3 \& \sim$ Aug 24

- ~May 28: ponds form ($>5 \%$),
- \sim June 6: ponds gone! Frozen surface with fresh snow,
- \sim Mid-June: ponds return ($<5 \%$ on June 17 ; $>5 \%$ June 21).
*>5\% pond fraction change

Different flavors of refrozen pond events?

Ponderings:

- Early melt season: from a cold state \rightarrow longer-lasting?
- Mid-summer: diurnal freezing \rightarrow short-lived?
- Late melt season: from a warm state \rightarrow variable?

Science questions:

- What's normal?
\rightarrow When, how frequently, \& how long do refreezing pond events occur?
- Are these events important?
\rightarrow What are the effects of refreezing ponds on surface albedo \& absorbed SW radiation?
- Can these events be realistically simulated?
\rightarrow Which atmospheric conditions lead to refreezing pond events?

Data \& Methods

Community Earth System Model, Version 2
(CESM-2):

- Tuned (Kay et al., 2022):
- More realistic sea-ice state,
- 10 ensemble members for 2000-2009

Surface-based \& satellite observations:

- MPF: Transect + SkySat + MODIS + Sentinel
- Snow depth: magnaprobe
- Albedo: Kipp and Zonen albedometer

Refreezing pond (RFP) event:

- Pond ice fraction is at least 5%,
- Reduction in pond fraction is at least 5% \& eventually (\& mostly*) rebounds.

Other notes:

- Evaluating grid cells with $>50 \%$ SIC year-round,
- Effective ponds - open to atmosphere,
- Ignoring subnivean ponds,
- Not the same thing as summer snowfall events.

When, how often, \& how long do refreezing pond events occur?

Date: $23 \mathrm{Jul} \pm 7$ days
Frequency: $<1 \pm \ll 1$ day
Duration: 10 ± 4 days

Timing:

- (1) Early summer in Pacific sector \& (2) late summer in MYI region \& N. Atlantic. In general, not many events are simulated.
- More events in areas with MYI region.

Duration is spatially variable, averages to 10 ± 4 days.

- Are longer-lasting events related to major synoptic events?

What happens to surface conditions when ponds refreeze?

Pond coverage change (\%)
Snow depth change (m)

Albedo change

During refreezing pond events:

- Considerable decrease in ponded ice: $-12 \% \pm 3 \%$.
- Small increase in snow depth : $4 \mathrm{~mm} \pm 2 \mathrm{~mm}$.
- Considerable increase in albedo: 0.05 ± 0.01
\rightarrow Largest increase in snowy areas with large decrease in pond coverage.

Effects of refreezing pond events on the absorbed SW radiation?

During RFP events, correlations are:

- Weaker with pond coverage \& albedo,
- Stronger with downwelling SW radiation...

SW absorption decreases primarily due to downwelling SW radiation decreasing...

Less downwelling SW radiation? Some speculation:

Shortwave Radiation

The albedo boost from refreezing pond events \& associated snowfall is masked by clouds (TBD)

How do the model results \& MOSAiC observations fit within the context of one another?

	Observations ($\mathrm{N}=1$) (MOSAiC)	CESM2-tuned ($\mathrm{N}=30$) (MOSAiC)	CESM2-tuned ($\mathrm{N}=30$) (Pan-Arctic)
Number:	$\begin{gathered} \sim_{1}^{\sim}(\operatorname{Leg} 4) \\ 1 \text { (Leg5) } \end{gathered}$	<1: 2/30 runs had 1 event <1: 4/30 runs had 1 event	$<1 \pm \ll 1$ days
Duration:	~20 days 2 days	$\begin{gathered} 12 \& 20 \text { days } \\ 7,2,18, \& 3 \text { days } \end{gathered}$	10 ± 4 days
Dates:	$\begin{aligned} & \sim 1 \text { June } \\ & 24 \text { Aug } \end{aligned}$	$\begin{aligned} & 23 \text { July } \\ & 16 \text { July } \end{aligned}$	22 July
Pond fraction change:	-10\%	$\begin{aligned} & -11 \% \\ & -9 \% \end{aligned}$	$-12 \pm 3 \%$
Snow change:	$60 \pm 10 \mathrm{~mm}$	$\begin{aligned} & 1 \mathrm{~mm} \\ & 6 \mathrm{~mm} \end{aligned}$	$4 \pm 2 \mathrm{~mm}$
Albedo change:	- 0.07	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	0.05 ± 0.01

The CESM2_tuned simulates:

- Much fewer events
- Different seasonal timing of events
- Much less snow accumulation

Preliminary conclusions \& next steps

- At MOSAiC, CESM2 tuned simulated fewer refrozen pond events \& less snow accumulation than observed.
- Need to look at larger sampling size, same period, event duration, \& seasonal timing to pinpoint potential biases.
- Are clouds masking the surface albedo boost?
- Characterize atmospheric conditions during refreezing events: Cloud cover, snowfall events, cyclones, frontal systems, cold air outbreaks, \& more.
- Data/idea suggestions \& collaborations welcome! \rightarrow melindaw@uw.edu
- Expand observational analysis to the pan-Arctic scale:
- Remote sensing retrievals paired with buoy observations (IABP):
- Wright et al., 2020, in review; Niehaus et al., in review; Martius et al., in prep; Tavri et al., in prep; Fuchs et al., in prep; Buth et al., in prep; Buckley et al., 2020; Webster et al., 2015; Rösel et al., 2012; \& many others.
- Hoping for MPF retrieval uncertainties better than 5%...
- Extra preliminary: CESM2-LE had even fewer refreezing events \& less snow accumulation... more analysis needed.

Thanks for listening

Focus period: the sunny season

