The role of ocean heat transport versus surface heat fluxes in driving Arctic warming and sea-ice decline

Dylan Oldenburg

Postdoctoral Investigator Woods Hole Oceanographic Institution

Supervisors: Young-Oh Kwon Claude Frankignoul Gokhan Danabasoglu Stephen Yeager Who Kim

 Arctic Ocean warming has been linked to enhanced ocean heat convergence (e.g. Bitz et al. 2006, Årthun et al. 2012, Smedsrud et al. 2013, Onarheim et al. 2015; Polyakov et al. 2017; Auclair and Tremblay 2018; Stroeve and Notz 2018; Wang et al. 2020; Shu et al. 2022)

- Arctic Ocean warming has been linked to enhanced ocean heat convergence (e.g. Bitz et al. 2006, Årthun et al. 2012, Smedsrud et al. 2013, Onarheim et al. 2015; Polyakov et al. 2017; Auclair and Tremblay 2018; Stroeve and Notz 2018; Wang et al. 2020; Shu et al. 2022)
- Previous studies have analysed the Arctic Ocean heat budget (e.g. Shu et al. 2022)

- Arctic Ocean warming has been linked to enhanced ocean heat convergence (e.g. Bitz et al. 2006, Årthun et al. 2012, Smedsrud et al. 2013, Onarheim et al. 2015; Polyakov et al. 2017; Auclair and Tremblay 2018; Stroeve and Notz 2018; Wang et al. 2020; Shu et al. 2022)
- Previous studies have analysed the Arctic Ocean heat budget (e.g. Shu et al. 2022)
- However, it is not clear how much heat gained by ocean heat convergence is used to warm the atmosphere or melt the ice

- Arctic Ocean warming has been linked to enhanced ocean heat convergence (e.g. Bitz et al. 2006, Årthun et al. 2012, Smedsrud et al. 2013, Onarheim et al. 2015; Polyakov et al. 2017; Auclair and Tremblay 2018; Stroeve and Notz 2018; Wang et al. 2020; Shu et al. 2022)
- Previous studies have analysed the Arctic Ocean heat budget (e.g. Shu et al. 2022)
- However, it is not clear how much heat gained by ocean heat convergence is used to warm the atmosphere or melt the ice
- Also, is the atmosphere or the ocean the main heat source for the sea ice?

- Arctic Ocean warming has been linked to enhanced ocean heat convergence (e.g. Bitz et al. 2006, Årthun et al. 2012, Smedsrud et al. 2013, Onarheim et al. 2015; Polyakov et al. 2017; Auclair and Tremblay 2018; Stroeve and Notz 2018; Wang et al. 2020; Shu et al. 2022)
- Previous studies have analysed the Arctic Ocean heat budget (e.g. Shu et al. 2022)
- However, it is not clear how much heat gained by ocean heat convergence is used to warm the atmosphere or melt the ice
- Also, is the atmosphere or the ocean the main heat source for the sea ice?

- Part I: Analyse the Arctic Ocean heat budget under global warming
- Part II: Arctic sea-ice heat budget

- Part I: Analyse the Arctic Ocean heat budget under global warming
- Part II: Arctic sea-ice heat budget SHF_{atmos} atmosphere Arctic sea-ice SHF_{ocn} ocean

• Three terms:

- Three terms:
 - Lateral OHT into the Arctic

- Three terms:
 - Lateral OHT into the Arctic

- Three terms:
 - Lateral OHT into the Arctic

$$OHT_{tot}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v\theta} dz dx$$

- Three terms:
 - Lateral OHT into the Arctic

$$OHT_{tot}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v\theta} dz dx$$

$$OHT_{Eul}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v} \overline{\theta} dz dx$$

- Three terms:
 - Lateral OHT into the Arctic

$$OHT_{tot}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v\theta} dz dx$$

$$OHT_{Eul}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v} \overline{\theta} dz dx$$

 $OHT_{subm} = OHT_{tot} - OHT_{Eul}$

- Three terms:
 - Lateral OHT into the Arctic

$$OHT_{tot}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v\theta} dz dx$$

$$OHT_{Eul}(t) = \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v} \overline{\theta} dz dx$$

 $OHT_{subm} = OHT_{tot} - OHT_{Eul}$

$$F_{\text{residual}} = \frac{d}{dt} \text{OHC} - \text{OHT}_{\text{tot}} - \text{Frazil} - \text{SHF}$$

- Three terms:
 - Lateral OHT into the Arctic
 - Sea-surface heat fluxes

- Three terms:
 - Lateral OHT into the Arctic
 - Sea-surface heat fluxes
 - Frazil ice formation

Which Arctic gateways drive OHT increase?

Barents Sea Opening contributes substantially to OHT increase

Fram Strait also contributes to OHT increase

OHT increase driven by changes in Barents, Fram and Bering Straits

OHT increase driven by changes in Barents, Fram and Bering Straits

OHT increase driven by changes in Barents, Fram and Bering Straits

Are these OHT changes driven by volume flux variability?

Volume fluxes not primary driver of OHT changes

How much do the different surface heat flux components contribute to Arctic Ocean heat gain/loss?

How much heat is exchanged with ice vs. atmosphere?

Shortwave radiation increases over time

Longwave radiation becomes more negative

Latent heat flux also increases in magnitude

Sensible heat fluxes also increase in magnitude

Melt heat flux decreases due to sea-ice decline

Increased heat loss from snow melt

Runoff component negligible

Ocean heat loss increases due to enhanced sensible, latent and longwave fluxes

Part II: Arctic sea-ice heat budget

Part II: Arctic sea-ice heat budget

Both ocean and atmosphere provide heat to ice in summer

Both ocean and atmosphere provide heat to ice in summer

Both ocean and atmosphere provide heat to ice in summer

Seasonality 1920-1940

Shortwave drives ice heat gain in summer, longwave drives heat loss in winter

How do these heat fluxes change over time?

Heat gain from ocean increases slightly

Increased heat loss to atmosphere over time

Increased heat loss to atmosphere due to enhanced sensible, latent heat

In summer, flux per unit area increases over time, blowing up as ice disappears

Ocean heat flux also increases dramatically

Heat flux from atmosphere main source of heat until around 2050

Increase in atmospheric heat gain largely due to strengthened incoming longwave radiation

Conclusions

 Arctic Ocean warming driven by increased OHT through Fram, Bering Straits, Barents Sea Opening

Conclusions

- Arctic Ocean warming driven by increased OHT through Fram, Bering Straits, Barents Sea Opening
- OHT increase largely due to passive temperature changes

Conclusions

- Arctic Ocean warming driven by increased OHT through Fram, Bering Straits, Barents Sea Opening
- OHT increase largely due to passive temperature changes
- Sea-surface heat loss increases due to enhanced longwave radiation and latent, sensible heat loss
Conclusions

- Arctic Ocean warming driven by increased OHT through Fram, Bering Straits, Barents Sea Opening
- OHT increase largely due to passive temperature changes
- Sea-surface heat loss increases due to enhanced longwave radiation and latent, sensible heat loss
- Atmosphere is initially main heat source for ice in summer. Ocean starts to become main heat source over time

The end

Thank you!

Submonthly OHT increase driven by changes in Barents and Bering Straits

OHT anomalies split into active and passive components

$$\begin{split} \text{OHT}'(y,t) &= \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} \overline{v} \theta' dz dx & \text{(passive)} \\ &+ \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} v' \overline{\theta} dz dx & \text{(active)} \\ &+ \rho c_p \int_{x_1}^{x_2} \int_{z_{bot}}^{0} v' \theta' dz dx & \text{(interactive)} \end{split}$$

OHT increase driven by passive and interactive changes

Part II: Arctic sea-ice heat budget

Arctic becomes ice-free in September

