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The Importance of Internal Variability
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* The regions of the Arctic currently experiencing
the largest internal variability coincide with:
* The regions of most rapid declines
* Regions important for ship navigability
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Low-Frequency Variability

* Periods >2 years. Typically accounts for ~1/3 - 1/4 of
internal variability (Wyburn-Powell et al., 2022), but
varies substantially between global climate models

(GCMs).

* A spring predictability barrier has been shown to limit
predictability for regional Arctic sea ice e.g. (Bonan et
al.,2019; Bushuk et al., 2020).
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* A spring predictability barrier has been shown to limit B ™ ot a1, (2020)

predictability for regional Arctic sea ice e.g. (Bonan et
al.,2019; Bushuk et al., 2020).

c) September sea-ice extent trajectories

* However, at longer time periods predictability may = ]
emerge e.g. related to the IPO (Screen & Deser, I ]
2019). %i o ?”%k%

* Objective: Identify modes of climate variability that T creen & Deser (2019)

affect Arctic sea ice anomalies across the Arctic, at
lead times of 3-20 years



Datasets

e Sea ice concentration from CMIP6 historical runs, for GCMs which also have data from the
Climate Variability Diagnostics Package (CVDP). 42 GCMs with 3+ members, 9 with 30+ members.
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Datasets

e Sea ice concentration from CMIP6 historical runs, for GCMs which also have data from the
Climate Variability Diagnostics Package (CVDP). 42 GCMs with 3+ members, 8 with 30+ members.
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* 14 seasonal Climate modes of variability from the CVDP:
* Atlantic Meridional Mode (AMM)
* Atlantic Multidecadal Oscillation (AMO)
* Atlantic Meridional Overturning Circulation (AMOC)
 Atlantic Nifio (ATN)
* Indian Ocean Dipole (I0D)
* Interdecadal Pacific Oscillation (IPO) 30
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* Nifno 3.4 Index (NINO34)

* North Pacific Index (NPI)
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Use of Data

* We calculate the regional sea ice concentration
(SIC) for 7 regions (see figure).

* For each region, we remove the interannual
variability by detrending and taking a 2-year

lowpass filter.

* The seasonal CVDP variables are detrended
and standardized, but are not lowpass filtered.
There are 4 seasonal values for each of the 14

variables.
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Analysis Method

* Regress 56 Input features of climate variability modes, on

to 1 output layer of the target SIC anomaly (in % points). A simple neural network

. . . . [ t hidd tput

* Our machine learning models are trained on 1 region for 1 ayer  layer  layer
month of SIC anomalies at a time. n=56 n=1

* Training/validation/test split 75/15/10%. Either using a
large ensemble (LE) or multi-model large ensemble
(MMLE):

* LE — A single GCM split by member

* MMLE — We select all GCMs with at least 3 ensemble members
(42 GCMs) or at least 30 members (8 GCMs).



Four Machine Learning Model Configurations

* We want to determine what complexity of ML model is required to
capture the links between climate variability modes and SIC
anomalies.

* Model 1 —Simple linear regression. 56-1 with linear activation functions.
* Model 2 — Simple nonlinear regression. 56-1 with RelLU activation functions.
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Four Machine Learning Model Configurations

* We want to determine what complexity of ML model is required to
capture the links between climate variability modes and SIC

anomalies.

* Model 1 —Simple linear regression. 56-1 with linear activation functions.

* Model 2 — Simple nonlinear regression. 56-1 with RelLU activation functions.
* Model 3 — Linear neural net. 56-8-8-1 with linear activation functions.

* Model 4 — Nonlinear neural net. 56-8-8-1 with ReLU activation functions.
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Chukchi Sea
August
Validation r?

A simple linear model is the best

* Typically, the linear models 1 and 3 perform almost identically. Therefore, the
impact of climate variability modes on SIC can be considered independently,

with limited non-linear effects.
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Chukchi Sea

August
Validation r?

A simple linear model is the best

* Typically, the linear models 1 and 3 perform almost identically. Therefore, the
impact of climate variability modes on SIC can be considered independently,

with limited non-linear effects.

* Model 2 (56-1, nonlinear) performs the worst, so if you have nonlinearities, a
simple model (O hidden layers) will not yield high predictability.

* Model 4 (56-8-8-1, ReLU) also performs poorly, especially for the smaller
ensemble sizes, but can do better than model 2 at short lead time and for large

ensemble sizes.
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Assessing Predictive Skill with Persistence

Lagged 3 years Lagged 5 years Lagged 10 years Lagged 15 years
] .|

0.40

 We can measure predictive skill as

the validation r? value minus the r? _ 035
value from persistence. 0.30

0.25

* At a 5-year lag time we typically Lagged 3years,  Lagged Syears,  Lagged 10years, Lagged 15 years, W20

minus Persistence minus Persistence minus Persistence minus Persistence

obtain the highest r* value above
persistence.

e CESM2-LENS has very
high persistence so it usually
performs worse in predictive skill
in comparison to other GCMs.
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GCM predictive skill by region and month
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Climate Variability Modes and the August

Chukchi Sea

* Two dominant climate variability
modes are Nifio 3.4 Index and
Global Average Surface
Temperature, common across
GCMs.

* Some climate modes have high
confidence of small influences
such as the SAM

* Other modes such as the
AMO, PDO, NAM do not appear
as important for most GCMs
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SIC Anomaly [%]
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Summary across regions

* Most GCMs and regions have the
same sign of climate mode
influence.

e Similar to the Chukchi Sea,
NINO34 and TAS are the strongest
influences across regions.

* Some surprises are the SAM's
strong and consistent negative
correlation, and the small
influence of the AMO.
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Beaufort Sea, September
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Conclusions

* A simple linear model best captures climate variability modes' effect on regional
Arctic sea ice anomalies.

* The dominant modes of variability are: Global average temperature which is
strongly negatively correlated with SIC anomalies across regions, and Nifio3.4 index
is next most important, and positively correlated.

* Other modes of variability have some regional or GCM dependence on their
magnitude of influence, but generally have the same sign across GCMs and
regions.

* CESM2-LENS exhibits highly predictable properties, but has high persistence
in comparison to other GCMs, reducing skill.



CESM2-LENS micro/macro-Perturbations

Beaufort Sea, October
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Assessing Predictive Skill with Persistence

* CESM2-LENS has very high persistence
so it usually performs worse in

predictive skill when compared with
other GCMs.

* Typically a 5 year lag time is where the
largest gap between validation r? and
persistence exists.
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Summary across regions, CESM2-LENS

* Similar to the other large ensemble

GCMs, both global average surface .= oo oo

temperature and Nino 3.4 Index are

SIC Anomaly [%]
|

the most dominant climate

Atlantic Multidecadal Interdecadal Pacific Nifio 3.4 Index Pacific Decadal Atlantic Meridional
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variability modes.

S
=
L] L] ©
*The PDO has a reglonal Importance
<
) =,
Int tingl f the Pacifi m
g y y Pacific/North American North Atlantic Southern Annular Mode Global Average Surface
Teleconnec tion (PNA) Oscillation (NAO) (SAM) Temperature (TAS)
S e Ct O r- < Beaufort Sea, Oct
‘; Chukchi Sea, Dec
‘© E. Siberian Sea, Dec
§ Laptev Sea, Nov
< Kara Sea, Nov
% = Barents Sea, Nov
Central Arctic, Jul

Wyburn-Powell & Jahn (in prep.)




