
A step towards SIMA
Implementation of the

CCPP in CAM

Jan 30th , 2023

Jesse Nusbaumer,
Software Engineer, NCAR CGD-AMP

System for Integrated Modeling of the Atmosphere
(SIMA)

SIMA is a unified community atmospheric modeling framework, for use in an Earth System
Model (ESM). SIMA enables diverse configurations of an atmosphere model inside of an ESM

for applications spanning minutes to centuries and cloud to global scales, including
atmospheric forecasts and projections of the atmospheric state and composition from the

surface into the thermosphere.

AMWG Winter Meeting

AMWG Winter Meeting

All of this is already in CAM in some form…

AMWG Winter Meeting

All of this is already in CAM in some form…except WRF
Physics. How can we bring in entirely new sets of physics
into what will eventually be SIMA?

AMWG Winter Meeting

Current CAM physics

Terminal Window showing all of the “CAM” physics source code

AMWG Winter Meeting

Current CAM physics

Terminal Window showing all of the “CAM” physics source code,
with all files highlighted in green just CAM interface routines.

Common Community Physics Package (CCPP)

The CCPP is a software framework that automatically generates the
Fortran interface (cap) layer for a physics parameterization (scheme).

AMWG Winter Meeting

CCPP Suite Definition File

The list and order of physics
schemes is controlled by a Suite
Definition File (SDF), which
allows for much easier
re-ordering of physics routines,
and removes the need to have
a “physpkg.F90” source file.

AMWG Winter Meeting

CCPP Physics Scheme

AMWG Winter Meeting

Metadata (*.meta) file,
which lists metadata for all interface variables

Source code (*.F90) file,
which contains the actual parameterization code

With these two files and a host model metadata file,
the model/scheme interface can be auto-generated

 !> \section arg_table_apply_tendency_of_x_wind_run Argument Table
 ! \htmlinclude apply_tendency_of_x_wind_run.html
 subroutine apply_tendency_of_x_wind_run(nz, dudt, u, dudt_total, dt, &
 errcode, errmsg)

 ! Dummy arguments
 integer, intent(in) :: nz ! Num vertical layers
 real(kind_phys), intent(in) :: dudt(:,:) ! tendency of x wind
 real(kind_phys), intent(inout) :: u(:,:) ! x wind
 real(kind_phys), intent(inout) :: dudt_total(:,:) ! total tendency of x wind
 real(kind_phys), intent(in) :: dt ! physics time step
 integer, intent(out) :: errcode
 character(len=512), intent(out) :: errmsg

 ! Local variable
 integer :: klev

 errcode = 0
 errmsg = ''

 do klev = 1, nz
 u(:, klev) = u(:, klev) + (dudt(:, klev) * dt)
 dudt_total(:, klev) = dudt_total(:, klev) + dudt(:, klev)
 end do

 end subroutine apply_tendency_of_x_wind_run

[ccpp-arg-table]
 name = apply_tendency_of_x_wind_run
 type = scheme
[nz]
 standard_name = vertical_layer_dimension
 long_name = Number of vertical layers
 units = count
 type = integer
 dimensions = ()
 intent = in
[dudt]
 standard_name = tendency_of_x_wind
 units = m s-2
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = in
[u]
 standard_name = x_wind
 units = m s-1
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = inout
 state_variable = True
[dudt_total]
 standard_name = tendency_of_x_wind_due_to_model_physics
 units = m s-2
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = inout

CCPP Physics Scheme

AMWG Winter Meeting

Metadata (*.meta) file,
which lists metadata for all interface variables

Source code (*.F90) file,
which contains the actual parameterization code

With these two files and a host model metadata file,
the model/scheme interface can be auto-generated

 !> \section arg_table_apply_tendency_of_x_wind_run Argument Table
 ! \htmlinclude apply_tendency_of_x_wind_run.html
 subroutine apply_tendency_of_x_wind_run(nz, dudt, u, dudt_total, dt, &
 errcode, errmsg)

 ! Dummy arguments
 integer, intent(in) :: nz ! Num vertical layers
 real(kind_phys), intent(in) :: dudt(:,:) ! tendency of x wind
 real(kind_phys), intent(inout) :: u(:,:) ! x wind
 real(kind_phys), intent(inout) :: dudt_total(:,:) ! total tendency of x wind
 real(kind_phys), intent(in) :: dt ! physics time step
 integer, intent(out) :: errcode
 character(len=512), intent(out) :: errmsg

 ! Local variable
 integer :: klev

 errcode = 0
 errmsg = ''

 do klev = 1, nz
 u(:, klev) = u(:, klev) + (dudt(:, klev) * dt)
 dudt_total(:, klev) = dudt_total(:, klev) + dudt(:, klev)
 end do

 end subroutine apply_tendency_of_x_wind_run

[ccpp-arg-table]
 name = apply_tendency_of_x_wind_run
 type = scheme
[nz]
 standard_name = vertical_layer_dimension
 long_name = Number of vertical layers
 units = count
 type = integer
 dimensions = ()
 intent = in
[dudt]
 standard_name = tendency_of_x_wind
 units = m s-2
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = in
[u]
 standard_name = x_wind
 units = m s-1
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = inout
 state_variable = True
[dudt_total]
 standard_name = tendency_of_x_wind_due_to_model_physics
 units = m s-2
 type = real | kind = kind_phys
 dimensions = (horizontal_loop_extent, vertical_layer_dimension)
 intent = inout

All schemes are split into a model init, timestep init,
run, timestep final, and model final phase.

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

AMWG Winter Meeting

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

1. Save a snapshot of the model state before and after the CAM
scheme

AMWG Winter Meeting

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

1. Save a snapshot of the model state before and after the CAM
scheme

2. Create a metadata file for that scheme, and pull out the source
code to be CCPP-compliant

AMWG Winter Meeting

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

1. Save a snapshot of the model state before and after the CAM
scheme

2. Create a metadata file for that scheme, and pull out the source
code to be CCPP-compliant

3. Add at least the “run” phase of the new CCPP scheme back into
CAM, and check that it is bit-for-bit

AMWG Winter Meeting

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

1. Save a snapshot of the model state before and after the CAM
scheme

2. Create a metadata file for that scheme, and pull out the source
code to be CCPP-compliant

3. Add at least the “run” phase of the new CCPP scheme back into
CAM, and check that it is bit-for-bit

4. Add the full CCPP scheme into CAMDEN (described in next slide)

AMWG Winter Meeting

CCPP Implementation plan

For each physics parameterization/scheme in CAM, the SEs will:

1. Save a snapshot of the model state before and after the CAM
scheme

2. Create a metadata file for that scheme, and pull out the source
code to be CCPP-compliant

3. Add at least the “run” phase of the new CCPP scheme back into
CAM, and check that it is bit-for-bit

4. Add the full CCPP scheme into CAMDEN (described in next slide)

5. Test the full scheme in CAMDEN using the snapshots, and ensure
that the answers are the same.

AMWG Winter Meeting

CAMDEN

CAMDEN is a new model infrastructure for CAM, which should
become publicly accessible sometime later this year (although it
will have limited science capabilities at first).

AMWG Winter Meeting

People and Time

Folks who will be working on this transition include myself and:
• Courtney Peverley <- Soon to be AMP’s CCPP framework expert
• Cheryl Craig
• John Truesdale
• Kate Thayer-Calder
• Peter Lauritzen
• AMP Scientists

The current hope is to have the CAM7 (cam_dev) physics
schemes ported to CCPP by this time next year, but will
depend on a myriad of factors.

AMWG Winter Meeting

Questions
Thanks for listening!

