Examining the Impacts of an Interactive Fire Plume-Rise Model in E3SM on Aerosol Radiative Effects

¹Zheng Lu, ¹Xiaohong Liu, ¹Ziming Ke,
²Jiwen Fan, ²Kai Zhang, ²Po-Lun Ma
1 Texas A&M University, College Station, USA
•2 PNNL, Richland, USA

Motivation – Background

- Biomass burning aerosols (BBA)
- Injection heights of BBA
- More extreme fires in the future.

Motivation – 1D plume-rise model

- Prescribed injection heights in GCMs
- 1D plume-rise model by Freitas et al., 2007
 - Host models (WRF-Chem, DOE <u>E3SM</u>, CESM, etc.)
 - 6 equations of ω , T, and cloud hydrometeors.
 - Inputs: <u>fire size</u> and <u>fire heat flu</u>x, and ambient conditions (T, ρ, ω, U, V, qv)

Methodology

- Fire properties (Val Martin et al., 2012)
 - Heat flux: Fire radiative power (FRP)×10
 - Fire size: Scaled-FRP
- Different fire intensity
 - Based on FRP
 - Small-medium-big-extreme four bins
- Strong diurnal cycle

• Fire diurnal cycle in Li et al. (2019)

Methodology – Model configuration

- E3SMv1 with ne30 grid (~1°)
- 2018: QFED daily fire emissions + MODIS FRP retrievals
- Four cases with different vertical profiles and fire diurnal cycles
- The same BBA emission files used in all cases, including BC

and PC	Case	Vertical Profiles	Fire diurnal cycle
	CONTROL	Default	Constant
	PLUME	Plume-rise	Yes
	No_DC	Plume-rise	Constant
	SURFACE	Surface	Constant

Vertical profiles of BBA emissions

Vertical profiles BBA emissions in North America during August

- Diurnal cycle in dash lines:
 - Strong diurnal cycle
 - Below 1km during local night
 - Peaking at 2km during afternoon.
- Monthly averaged in solid lines:
 - More BBA above 2 km due to plume-rise model + fire diurnal cycle assumption

Injection height: model vs. MISR

Percentage of BBA injected higher than 2km in JJA

PLUME @ 10:00LST PLUME @ 11:00LST PLUME @ 11:00LST $0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 \times 100$

MISR plume product (2008~2010; Val Martin et al., 2018)

- CONTROL
 - Underestimates in N. America
 - o Overestimates in Alaska andS. America
- PLUME:
 - from 10LST to 11LST
 - Overestimates in C. Asia and S.E. Asia

Vertical profiles of BBA

Vertical profiles of median BBA mass mixing ratio vs. NOAA WE-CAN

- Hourly outputs sampled along the flight track
- PLUME
 - Reasonably captures both peaks at 5 km and 4km in July
 - Reduces bias under 2km in August
 - CONTROL
 - Predicts too many BBAs
 below 2km

BC+POM AOD and radiative effects

PLUME – CONTROL

PLUME – SURFACE

- PLUME vs. CONTROL
 - Slightly higher AOD_{BC+POM}
 - Dipole features
 - Warming effect (0.13 Wm⁻²): surface albedo effect + semi-direct effect
- PLUME vs. SURFACE
 - Significantly higher AOD_{BC+POM}
 - Cooling effect (-0.14Wm⁻²): strong indirect effect (CDNC increase)

Summary

- 1. In this study, we incorporate an interactively fire plume-rise model in the DOE Energy Exascale Earth System Model (E3SM).
- **2.** E3SM with the plume-rise model outperforms the default model compared to the NOAA WE-CAN in-situ observation.
- **3.** The inclusion of the plume-rise model cause strong warming effect (0.13 Wm⁻²). The radiative effect is sensitive to the Injection height in a non-linear manner.

Email you questions to zlu@tamu.edu

Additional slides: residual effect

PLUME - CONTRL

PLUME - Surface

Additional slides: CDNC

PLUME - CONTROL

PLUME - SURFACE

