Increased cloud liquid water in climate models enhances both aerosol indirect forcing and cloud radiative feedback

Xi Zhao¹, Xiaohong Liu¹, Yi Qin², Mark D. Zelinka³, Stephen A. Klein³, Meng Zhang³, Kai Zhang², Po-Lun Ma², Jiang Zhu⁴, Zheng Lu¹, and Ramalingam Saravanan¹

¹ Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
² Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
³ Lawrence Livermore National Laboratory, Livermore, CA, USA
⁴ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

Motivation

ERF_{ACI}:

effective radiative forcing of anthropogenic aerosols

Cloud feedback:

the response of clouds to the climate change.

- Climate model with a stronger positive cloud feedback also has a stronger cooling from aerosol indirect forcing due to anthropogenic aerosols
- Why?

Purpose: perturbed the cloud glaciation--- how the ERF_{ACI} change

Model Experiment	Model Setup
CTL	Default CESM2 and E3SM_V2 model
DCS	Same as CTL, but set the threshold on cloud ice and snow autoconversion process from 195 μm to 400 $\mu m.$
ConvTrig	Same as CTL, but turn off the new trigger of convection and use the old trigger
SIP	Same as CTL, but add SIP from raindrops freezing breakup and ice-ice collisional breakup
M92	Same as CTL, but use Meyer et al. (1992) scheme for ice nucleation in mixed-phase clouds instead of CNT
FreezCloud	Same as CTL, but assume all condensation to be ice phase when cloud temperature is smaller than -5° C

Less liquid More ice

• **ERF**_{ACI}: effective radiative forcing of anthropogenic aerosols

- Calculation: PD and PI experiments
 - For each simulation, adding a diagnostic calculation of radiation (F_{clean}) in which all the aerosols have been removed
 - Direct radiative forcing: $\Delta(F F_{clean})$
 - Cloud radiative forcing: $\Delta(F_{clean} F_{clear, clean})$ (Ghan, 2013)
- Cloud feedback: the response of clouds to the climate change.
 - Calculation :PD and PD+4K_SST experiments
 - Diagnostic package (Zelinka et al., 2021; 2022) to calculate cloud feedback components.

Outline

- Motivation
- Method
 - Model and Experiments
- Results
 - Relationship between LWP and $\mathsf{ERF}_{\mathsf{ACI}}$
 - Relationship between LWP and cloud feedback
 - Relationship between ACI and cloud feedback

(a) Liquid Water Path

LWP and ACI over NH

LWP and ACI over NH

With smaller LWP, the clouds are less susceptible to aerosol perturbations.

Outline

- Motivation
- Method
 - Model and Experiments
- Results
 - Relationship between LWP and ACI
 - Relationship between LWP and cloud feedback
 - Relationship between ACI and cloud feedback

Cloud feedback and LWP over SH (30-90S)

Cloud feedback

Less LWP, more ice When warming, more ice melting to liquid \rightarrow cloud optical depth increase \rightarrow stronger negative feedback

Outline

- Motivation
- Method
 - Model and Experiments
- Results
 - Relationship between LWP and ACI
 - Relationship between LWP and cloud feedback
 - Relationship between ACI and cloud feedback

Cloud feedback and ERF_{ACI}

- the simulation with high LWP
 - More positive cloud feedback
 - stronger cooling effect from ERF_{ACI}
 - Offset each other

Summary

- New finding:
 - $\mathsf{ERF}_{\mathsf{ACI}}$ monotonically decreases (stronger) with increasing LWP
 - With smaller LWP, the clouds are less susceptible to aerosol perturbations.

- Confirmed:
 - Relationship between LWP and cloud feedback
 - Stronger ACI Higher ECS