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Australia New 
Year’s fire1. What are the changes in temperature & circulation 

following the Hunga-Tonga volcanic eruption?

2. What are the changes in stratospheric O3?



Model simulations
•The control case without SO2 or H2O (no volcanic forcing)
•The SO2 only case with only SO2 injection
•The SO2+H2O case with both SO2 and H2O injection (the total 
forcing of HTHH eruption) 
•Ten realizations for each scenario in order to examine 
internal variability and isolate forced behavior, and run 
simulations till the end of 2023

Zhu et al. (2022)
Commun. Earth Environ.



Volcanic plumes have persisted in the stratosphere

Max: 12 ppmv Max: 4 ppmv

Obs. March Obs. August Modeled August

4

Sulfate aerosol (red contours, 10-3 km-1)

• Model can track the evolving H2O and aerosol plumes.

Cool strato. Warm strato. ?Temperature



Hatched regions indicate where the 2022 
temperature anomalies are outside internal variability
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Unprecedented stratospheric cooling in Southern Hemisphere (SH)

Obs. 

• A fingerprint of the forced response to the Hunga-Tonga eruption
• Combined effects of both H2O and sulfate aerosol are important 
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Hatched regions indicate where the 2022 U 
anomalies are outside internal variability

Large circulation anomalies due to volcanic influences 
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• Equatorward shift of the Antarctic polar vortex

• The BDC is weakening



Low O3 in the SH midlatitude lower stratosphere

Hatched regions indicate where the 2022 
O3 anomalies are outside internal variability
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• Mid-latitude O3 reduction is linked to winter circulation changes (dynamics) 
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over 11-22 km
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Large Antarctic O3 hole in 2022
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• Antarctic O3 losses are due to sulfate 
aerosol (chemistry)
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Key points
• Large-scale SH stratospheric cooling
• Equatorward shift of the Antarctic polar vortex
• Slowing of the Brewer-Dobson circulation 
• Persistent ozone reduction in the SH wintertime midlatitudes.
• Large springtime Antarctic ozone losses in 2022
• Model can track the plumes and capture volcanic responses

9
Wang et al., under review in Science

xinyuew@ucar.edu



A B C

Hatched regions indicate 
where the 2022 anomalies 
are outside the range of all 
variability during 2004-2021 

Both H2O and SO2 (sulfate aerosol) forcings are important for realistic 
simulation of the HTHH responses

• Combined effects of both H2O and sulfate aerosol are important 
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