## Stratospheric climate anomalies and ozone loss caused by Hunga-Tonga volcanic eruption

Xinyue Wang<sup>1\*</sup>, William Randel<sup>1</sup>, Yunqian Zhu<sup>2, 3, 4</sup>, Simone Tilmes<sup>1</sup>, Jon Starr<sup>1</sup>, Wandi Yu<sup>5</sup>, Rolando Garcia<sup>1</sup>, Brian Toon<sup>3, 6</sup>, Mijeong Park<sup>1</sup>, Douglas Kinnison<sup>1</sup>, Adam Bourassa<sup>7</sup>, Landon Rieger<sup>7</sup>, Jianghanyang Li<sup>2, 8</sup>

<sup>1</sup>Atmospheric Chemistry Observations & Modeling lab, National Center for Atmospheric Research, Boulder, CO, USA
<sup>2</sup>Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
<sup>3</sup>Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA
<sup>4</sup>Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA, 80305
<sup>5</sup>Department of Atmospheric and Planetary Sciences, Hampton university, VA, USA
<sup>6</sup>Department of Atmospheric Studies, University of Colorado Boulder, Boulder, CO, USA
<sup>7</sup>Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada
<sup>8</sup>Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA



Under review in Science







Obs. stratospheric aerosol optical depth



# Model simulations

- The **control** case without SO<sub>2</sub> or H<sub>2</sub>O (no volcanic forcing)
- The SO<sub>2</sub> only case with only SO<sub>2</sub> injection
- The SO<sub>2</sub>+H<sub>2</sub>O case with both SO<sub>2</sub> and H<sub>2</sub>O injection (the total forcing of HTHH eruption)
- **Ten realizations for each scenario** in order to examine internal variability and isolate forced behavior, and run simulations till the end of 2023



Zhu et al. (2022) Commun. Earth Environ.

## Volcanic plumes have persisted in the stratosphere

**Obs.** March Obs. August Modeled August 2022 minus climatology 2022 minus climatology SO2+H2O minus Control 48 44 Max: 12 ppmv Max: 4 ppmv 44 40 40 Pressure (hPa) Pressure (hPa) 36 Pressure (hPa) Height (km) 36 32 10 10 32 10 28 28 30 30 24 30 24 50 70 50 70 20 50 70 100 20 100 100 60°S 30°S EQ. 30°N 60°N 30°S EQ. 30°N 60°N 60°S 60°S 30°S EQ. 30°N 60°N Latitude Latitude Latitude Sulfate aerosol (red contours, 10<sup>-3</sup> km<sup>-1</sup>) ĊЛ N ω dH<sub>2</sub>O [ppmv] Model can track the evolving H<sub>2</sub>O and aerosol plumes. ۲

?Temperature

## Unprecedented stratospheric cooling in Southern Hemisphere (SH)



- A fingerprint of the forced response to the Hunga-Tonga eruption
- Combined effects of both H<sub>2</sub>O and sulfate aerosol are important

## Large circulation anomalies due to volcanic influences



- Equatorward shift of the Antarctic polar vortex
- The BDC is weakening

## Low O<sub>3</sub> in the SH midlatitude lower stratosphere



• Mid-latitude O<sub>3</sub> reduction is linked to winter circulation changes (dynamics)

## Large Antarctic $O_3$ hole in 2022



# Key points

- Large-scale SH stratospheric cooling
- Equatorward shift of the Antarctic polar vortex
- Slowing of the Brewer-Dobson circulation
- Persistent ozone reduction in the SH wintertime midlatitudes.
- Large springtime Antarctic ozone losses in 2022
- Model can track the plumes and capture volcanic responses



xinyuew@ucar.edu

Both  $H_2O$  and  $SO_2$  (sulfate aerosol) forcings are important for realistic simulation of the HTHH responses



Hatched regions indicate where the 2022 anomalies are outside the range of all variability during 2004-2021

Combined effects of both H<sub>2</sub>O and sulfate aerosol are important

Sep



#### Nov





TS

.8 1.2

0.6  $0 \simeq$ 

-0.6

1.2

-1.8







#### Modeled Jul T Anomalies



#### **Modeled Oct T Anomalies**

Ú

1.8

3.6

5.4

-5.4 -3.6 -1.8



#### Modeled Aug T Anomalies



#### Modeled Nov T Anomalies



#### Modeled Sep T Anomalies

essure (hFa)

Pressure ihPaj

30 58 160

60°S

5.4



EQ.

[K]

0

1.8

30°S

3.6

1.8

23

60"N

3.6 5.4

30°N





Modeled Aug U Anomalies





#### N2O Monthly Anomaly, ppbv, 08-2022 Aug, 2022 50 1 45 -20.0 Altitude (km) Pressure (hPa) 20.0 20.0 25 .20.0 -30.0 20 20.0 68 -20 20 40 60 -80 -60 -40 Ò 80 Latitude





### MLS August N<sub>2</sub>O Anomaly

