# Using the Perturbed Parameter Ensemble of the Community Earth System Model (CESM)

Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Hugh Morrison (NCAR) Duncan Watson-Parris (University of Oxford) Gregory Elsaesser, Marcus van Lier-Walqui (Columbia University)



CESM AMWG Winter. meeting, Boulder, February 1, 2023



This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

# **Motivation**

To understand the Community Earth System Model's (CESM) sensitivity of climate to different parameters

To learn uncertainties in climate sensitivity

To best tune the model

**Tool** : Perturbed Parameter Ensemble (PPE)

The initial goal of the PPE is to understand sensitivity to parameters of the:

- A. Mean state climate
- B. Aerosol forcing
- C. Cloud feedbacks

Create the PPE using Latin Hypercube Sampling



## Latin Hypercube Sampling

- 1. In **random sampling** new sample points are generated without taking into account the previously generated sample points. One does not necessarily need to know beforehand how many sample points are needed.
- 2. In **Latin Hypercube sampling** one must first decide how many sample points to use and for each sample point remember in which row and column the sample point was taken.

Latin Hypercube Sampling allows for reducing the number of simulations needed, and still cover the entire parameter space

source: wikipedia







## **Example of multivariable Latin Hypercube Sampling**



10

Darker and larger symbols are closer to the viewer



## **Perturbed Parameters in CESM**

## Across most of the cloud physics

- Turbulence (CLUBB)
- Microphysics (MG3/PUMAS )
- Deep Convection (ZM)
- Aerosol/Activation

## 43 Parameters

NCAR

UCAR

263 parameter sets for simulations

3 year simulations CAM6-CESM Climatological AMIP, Fixed SST

Min Physics Parameter Name Description Default Max Scheme CLUBB 2 clubb\_C2rt damping on scalar variances 1.0 0.26 2.0 clubb\_C6rt Damping on scalar fluxes 4.0 clubb\_C6rtb High Skewness in C6rt Skw. 6.0 2.08 5 clubb\_C8 Coef. #1 in C8 Skewness Equation 4.2 1.0 2.5 clubb\_beta Set plume widths for theta 1 and rt 2.4 1.6 clubb\_c1 Low Skewness in C1 Skw. 1.0 0.4 3 clubb\_c11 Low Skewness in C11 Skw 0.7 0.2 0.8 Constant for u'2 and v'2 terms clubb\_c14 2.2 0.4 3 clubb\_c\_K10 Momentum coefficient of Kh-zm 0.5 0.2 0.6 clubb\_gamma\_coef Low Skw .: gamma coef. Skw 0.308 0.25 0.35 20 clubb\_wpxp\_L\_thresh Lscale threshold, damp C6 and C7 60 200 micro\_mg\_accre\_enhan\_fact MG2Accretion enhancing factor 1.0 0.1 10.0 0.01 0.005 0.2 micro\_mg\_autocon\_fact Autoconversion factor 3.30 micro\_mg\_autocon\_lwp\_exp KK2000 LWP exponent 2.47 2.10 -0.8 -2 micro\_mg\_autocon\_nd\_exp KK2000 autoconversion exponent -1.1micro\_mg\_berg\_eff\_factor 1.0 Bergeron efficiency factor 1.0 0.1 50e-06 micro\_mg\_dcs Autoconversion size threshold ice-snow 500e-06 1000e-06 micro\_mg\_effi\_factor Scale effective radius for optics calculation 1.0 0.1 2.0 micro\_mg\_homog\_size 25e-6 10e-6 200e-6 Homogeneous freezing ice particle size micro\_mg\_iaccr\_factor Scaling ice/snow accretion 1.0 0.2 1.0 Maximum allowed ice number concentration le5 10000e6 micro\_mg\_max\_nicons 100e6 0.2 5.0 micro\_mg\_vtrmi\_factor Ice fall speed scaling 1.0 Aerosol microp\_aero\_npccn\_scale Scale activated liquid number 1 0.33 3 0.5 microp\_aero\_wsub\_min Min subgrid velocity for liq activation 0.2 0 5 Subgrid velocity for liquid activation scaling 1 0.1microp\_aero\_wsub\_scale Min subgrid velocity for ice activation 0.001 0.2 microp\_aero\_wsubi\_min 0 microp\_aero\_wsubi\_scale Subgrid velocity for ice activation scaling 1 0.1 5 Dust emission scaling factor 0.1 1.0 dust\_emis\_fact 0.7 seasalt\_emis\_scale Seasalt emission scaling factor 0.5 2.5 10.0 Tuning for below cloud scavenging of interstitial sol\_factb\_interstitial 0.1 0.11 modal aerosols 0.1 sol\_factic\_interstitial Tuning for in-cloud scavenging of interstitial 0.4 1 modal aerosols ZMcldfrc\_dp1 Parameter for deep convection cloud fraction 0.1 0.05 0.25 Parameter for deep convection cloud fraction 500 1000 cldfrc\_dp2 100 Convective autoconversion Land 0.0075 0.002 zmconv\_c0\_lnd 0.1 0.1 zmconv\_c0\_ocn Convective autoconversion Ocean 0.03 0.02 Triggering threshold for ZM convection 70 35 350 zmconv\_capelmt -1.0e-3 -2.0e-3 -2.0e-4 zmconv\_dmpdz Conv Evap Efficiency 1.0e-5 1.0e-6 1.0e-5 zmconv\_ke zmconv\_ke\_Ind Conv Evap Efficiency over land 3.0e-6 1.0e-6 1.0e-5 zmconv\_momcd Efficiency of pressure term in ZM downdraft 0.7 0 1 CMT Efficiency of pressure term in ZM updraft CMT 0.7mconv-momcu Allowed number of negative buoyancy crossings 1 5 zmconv\_num\_cin 0.5 2 zmconv\_tiedke\_add Convective parcel temperature perturbation 0

## **Simulations and outputs**

- 263 parameter sets, 3 types of simulations with each set (789 in total)
  - Present day (PD)

Evaluation of current state of climate

• Pre industrial (PI)

Pre-industrial aerosol loading. Can evaluate <u>aerosol forcing</u> by taking differences between PD and PI. Nudged Pre-Industrial (1850) aerosols

• +4K sea surface temperature (SST4K)

Same setup as PD, but with sea surface temperature 4K higher. Can evaluate <u>cloud feedbacks</u> by taking difference between PD and SST4K

- Outputs:
  - Mean monthly state (181, 78 3-dimensional, 103 2-dimensional)
  - Some daily averages (22 2-dimensional)

https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.cam6.ppe.html



## **PPE** spread

Control run (Baseline CAM6 parameters)Mean over all 263 simulations



#### Aerosol Forcing: Present day (PD) - Pre-industrial (PI) aerosol Cloud Feedback: 4K SST - Present day (PD)

## **Forcing and Feedback**





## **Machine Learning of Global Mean outputs**

CERES



Climatebench: Watson-Parris et al., 2021, GMD Columbia NN : Elsaesser et al., in prep

NCAR

UCAR

## **Global mean output dependence on parameter values**

Blue: Simulated output for each individual simulation (263 ensembles)

Black: Emulated outputs (5000 samples) Columbia NN emulator





## SLOPE of *emulated* output dependence on parameters



BURDEN

Turbulence Microphysics Aerosol Convection



Tuning of certain outputs towards CERES global mean values



Use Machine Learning (Colombia NN), 500,000 samples Find all sample close to CERES values





## Summary

- PPE is a good way to probe sensitivity of CESM physics
  - Have 3 sets with 250 ensembles each. 46 different parameters, 200 output variables.
- Large spread in results
- Working with 2 different emulator tools to isolate effects of individual parameters and co-variance of parameters
- Evaluating how to use PPE to tune the model
- Community project
  - Outputs are available
  - <u>https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.cam6.ppe.html</u>
  - Scripts to create PPE parameter files and build files are available
  - Extensible: any CESM configuration can be run (Single Column, Aquaplanet, coupled). Same or different parameters









 $\mathbf{GP}$ 

ĆNN

 $\mathsf{RF}$ 















- 2

-1

0

- -1

- -2



# Example of output/parameter pair with the largest error in slope







ddfrc\_dp1 ddfrc dp2 dubb C2rt dubb C6rt dubb C6rtb dubb C8 dubb beta dubb cl dubb cl1 dubb\_c14 dubb c K10 dubb gamma coef dubb wpxp L thresh micro mg accre enhan fact micro mg autocon fact micro mg autocon lwp exp micro mg autocon nd exp micro mg berg eff factor micro mg dcs micro mg effi factor micro mg homog size micro mg iaccr factor micro mg max nicons micro mg vtrmi factor microp aero npccn scale microp aero wsub min microp aero wsub scale microp aero wsubi min microp aero wsubi scale dust emis fact seasalt emis scale sol factb interstitial sol factic interstitial zmconv c0 Ind zmconv c0 ocn zmconv capelmt zmconv dmpdz zmconv ke zmconv ke Ind zmconv momcd zmconv momcu zmconv num cin zmconv tiedke add

## **Correlation coefficient**



Example of output-parameter pair with high correlation coefficient.

NCAR UCAR

## **Developed tools**

- Latin Hypercube code
  - Read in parameters and ranges
  - Generate sets of namelist parameter values and save as netCDF file
- CAM run script for ensembles
  - Read in netCDF file of parameter values, and loop over sets of parameters to clone a case and create new simulations
  - Can be used with many different comp sets
- Emulator code
  - Takes CAM ensemble output with different parameter sets and builds an emulator of the model with it.
  - Emulator can be sampled randomly to generate lots (millions) of model variants
- Pieces available as 3 scripts. Can be iterated (add parameter sets), or different compsets run on the same parameter sets (e.g., forcing or feedback questions).
  - Files make it traceable and extensible: new science questions or fill in parts of parameter space in more detail.

