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Vertical turbulent flux parameterization

50-150km

Parameterization: processes smaller than grid size 
(not resolved) are approximated using resolved 
variables 

Convective boundary layer:
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Vertical turbulent flux parameterization

50-150km

Parameterization: processes smaller than grid size 
(not resolved) are approximated using resolved 
variables 

Convective boundary layer:

MF: mass flux
ED: eddy diffusivity

 Overestimates the entrainment flux

 Does not generalize to the situations with strong wind

 Underlying assumptions may not hold (e.g., au << 1) 

Ug= 4 (m/s), surface heat flux = 0.05 (Km/s)
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Developing a data-driven parameterization of vertical turbulent fluxes using reduced 
order representation of turbulent kinetic energy (TKE) and scalar profile that:

  

Objectives:
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Developing a data-driven parameterization of vertical turbulent fluxes using reduced 
order representation of turbulent kinetic energy (TKE) and scalar profile that:

  
 Generalizes across the turbulent regimes (weakly to strongly convective with 

various wind condition)
 Models the vertical turbulent fluxes of various scalars (e.g., heat, passive tracers)
 Decomposes the vertical turbulent fluxes to two main modes of variability 

Objectives:
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w'x' = F ( X ,TKE )
 All scalars are transported the same way by the flow 

Strategies and assumptions
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w'x' = F ( X ,TKE )

w'x'≈ f 1 ( X ,TKE )+f 2 ( X ,TKE )

 All scalars are transported the same way by the flow 

  The vertical turbulent flux of each scalar can be 
approximated using two principal modes of variability 

Strategies and assumptions
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w'x'≈αf 1 (X ,TKEu)+αf 2 ( X ,TKEw)

w'x' = F ( X ,TKE )

w'x'≈ f 1 ( X ,TKE )+f 2 ( X ,TKE )

 All scalars are transported the same way by the flow 

  The vertical turbulent flux of each scalar can be 
approximated using two principal modes of variability 

 These two modes depend on the horizontal and vertical TKE 
respectively

Strategies and assumptions
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 High resolution LES* data (dry convective boundary layer)
 6 simulations from weakly to strongly convective

 Horizontally coarse graining, computing mean variables and turbulent 
fluxes

name Ug(m/s) Q
0
(Km/s)

16-03 16 0.03

16-06 16 0.06

8-03 8 0.03

4-05 4 0.05

4-1 4 0.1

2-1 2 0.1

Simulations 

strongly
convective

strongly
sheared

3 implemented tracers:
 height dependent
 surface forced scalar
 entrainment forced scalar

Data
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 High resolution LES* data (dry convective boundary layer)
 6 simulations from weakly to strongly convective

 Horizontally coarse graining, computing mean variables and turbulent 
fluxes

name Ug(m/s) Q
0
(Km/s)
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16-06 16 0.06

8-03 8 0.03

4-05 4 0.05
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Simulations 

strongly
convective

strongly
sheared

3 implemented tracers:
 height dependent
 surface forced scalar
 entrainment forced scalar

Data
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Data

Inputs

Outputs

A novel neural network is trained to parameterize the vertical turbulent fluxes of 
all 6 LES simulations and scalars together
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w'x'=α1 f 1 (eg ( X ) ,eu (TKE ) )+α 2 f 2 (e g ( X ) ,ew (TKE ) )

Neural network architecture
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Neural network architecture

w'x'=α1 f 1 (eg ( X ) ,eu (TKE ) )+α 2 f 2 (e g ( X ) ,ew (TKE ) )
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Strongly convective
 Ug = 2 (m/s), surface heat flux = 0.1 (Km/s)

Strongly sheared
 Ug = 16 m/s, surface heat flux = 0.03 (Km/s)

Heat flux prediction
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Shear mode

w’θ’u/wθ*

Flux prediction

Heat flux Surface forced 
tracer flux

Entrainment forced 
tracer flux
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Shear mode Convective mode

Strongly 
convective

Weakly convective
strongly sheared

Heat flux decomposition

w ' θ' u/w ' θ 's w ' θ'w / w ' θ ' s

w ' θ ' ≈ α1 f 1 ( zθ , zu )+α2 f 2 (zθ , zw )
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Strongly 
convective

Weakly convective
strongly sheared

Heat flux decomposition

Inversion layer flux
Increases with wind shear

Inversion layer flux Increases 
with convective strength

Shear mode Convective mode

w ' θ' u/w ' θ 's w ' θ'w / w ' θ ' s

w ' θ ' ≈ α1 f 1 ( zθ , zu )+α2 f 2 (zθ , zw )
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How much of each mode can be explained by diffusion?

Projecting each mode on the gradient of its associated scalar → diffusive flux

w'x' u
diff∼−K

d X
dz

w'x'w
diff∼−K

d X
dz

Constraint: K depends on flow

The same K for all flaxes of the same simulation
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Diffusive part

Diffusive part

How much of each mode can be explained by diffusion?

 The diffusive flux is important 
in the surface layer

w ' θ' w / w ' θ ' s

w ' θ' u/w ' θ 's
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Diffusive part

Diffusive part

How much of each mode can be explained by diffusion?
w ' θ' w / w ' θ ' s

w ' θ' u/w ' θ 's



Our network:
 Generalize across turbulent regimes
 Models the vertical flux of various scalars  
 Outperforms EDMF

 By projecting shear and convective mode on the scalar gradient, we 
compute of the contribution of diffusion to each mode

 Diffusive flux is considerable only in the surface layer

 Our network decomposes the total turbulent flux of any scalar into two 
main modes of variability associated with shear and convection

We develop a data driven parameterization of vertical turbulent flux of scalars in the convective 
boundary layer using low-dimensional representation of TKE and scalar profile  

Thank you!     Shamekh and Genitine, 2023 (submitted)      ss6287@columbia.edu
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Flux decomposition : surface forced tracer flux

Shear mode Convective mode

w'ssf '≈α 1 f 1 (Ssf ,Tkeu)+α 2 f 2 (Ssf ,Tkew)

Su
rf

ac
e 

la
ye

r

Inversion layer
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Results: modeling Tke
w
 and Tke

u
 

Individual samples, tke
w

Mean and spread, tke
w

Mean and spread, tke
w

Individual samples, tke
u

Dashed line: True profile
Line : prediction

Colors: randomly selected samples
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How much of each mode can be explained by diffusion

Non-diffusive 
convective mode

Non-diffusive 
Shear mode

Diffusive Shear mode

Diffusive Convective 
mode
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