Employing PBL Mixing and Simple Parcel Dynamics in CAM Convection

Rich Neale and Cecile Hannay Climate and Global Dynamics Lab. (CGD) National Center for Atmospheric Research (NCAR)

JCAR

Modified ZM Parcel Properties

Strong Lowest Level Heating (L58)

- Thin lowest level (20m)
- Excessive (?) below convection cooling
- Large compensation by CLUBB heating

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific) Dec/Jan - 1992-93

Original Parcel

Modified ZM Parcel Properties

Parcel modification based on PBL mixing

- Parcel launch level and properties based on mixing scale (0.5xPBLH) ۲
- 'Scale aware' below cloud depth ۲
- <u>Could there be other sensitivities?</u> thin layer stability ۲

PBL Parcel

Convective Heating Profiles

Observed Convection Heating (Q1)

- Peak level depends on organization type
- Convective lower; stratiform higher
- How does this relate to separation of response? Convective (ZM) vs. Large scale (CLUBB)

(km)

N

---- Q,

Remaining Deep Convection Issues

Top Heaviness

- Shallowed over time CAM3->CAM6
- Increased sensitivity to moisture (good for MJO, diurnal cycle)
- Compensation from non-convection physics
- Implications for lower stratosphere (QBO, tape recorder)?

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific)

Community Earth System Mode

Simple Plume Dynamics (KE/PE)

Reference	Acronym	Equation	а	b	Remarks
Simpson and Wiggert (1969)		(1)	$\frac{2}{3}$		$\frac{1}{2}\frac{\partial w_c^2}{\partial z} = aB_c - 0.18\frac{w_c^2}{R}$, where <i>R</i> is cloud radius
Bechtold et al. (2001)	BBGMR	(12)	$\frac{2}{3}$	1	
Gregory (2001)	G01	(11)	$\frac{1}{6}$	1	$\frac{1}{2}\frac{\partial w_c^2}{\partial z} = aB_c - (b'\delta + b\epsilon)w_c^2, b' = \frac{1}{2}$
Von Salzen and McFarlane (2002)	SF	(29)	$\frac{1}{6}$	1	
Jakob and Siebesma (2003)	JS	(7)	$\frac{1}{3}$	2	
Bretherton et al. (2004) Cheinet (2004) Scores et al. (2004)	BMG C04 SMST	(17) (1) (6)	1 1 2	2 1 1	
Rio and Hourdin (2008)	RH	(5)	1	1	$\frac{\partial \sigma w_c^2}{\partial z} = a\sigma B_c - b'\delta\sigma w_c^2, b' = \frac{1}{2}$
Neggers et al. (2009)	NKB	(12)	1	$\frac{1}{2}$	$\frac{1}{2}(1-2\mu)\frac{\partial w_c^2}{\partial z} = aB_c - b\epsilon w_c^2, \mu = 0.15$
Pergaud et al. (2009)	PMMC	(7)	1	1	
Rio et al. (2010)	RHCJ	(9)	$\frac{2}{3}$	1	$\frac{1}{2}\frac{\partial w_c^2}{\partial z} = aB_c - (b' + b\epsilon)w_c^2, b' = 0.002$
De Rooy and Siebesma (2010)	RS	(27)	0.62	1	
ECMWF (2010)	ECMWF	(6.9)	$\frac{1}{3}$	1.95	
Kim and Kang (2011)	KK	(11)	$\frac{1}{6}$	2	$\frac{1}{2}\frac{\partial w_c^2}{\partial z} = a(1 - C_\epsilon b)B_c, C_\epsilon = 1/\overline{RH} - 1$

Bulk Convective Parcel Energetics

 $KE_{p}(k) = pe2ke_{eff}*PE_{p}(k)+KE(k-1)+KE_{LS}(k)$

 $\begin{aligned} & \mathsf{KE}_{p}(\mathbf{k}) = \mathsf{Kinetic} \text{ energy at level } \mathbf{k} \\ & \mathsf{PE}_{p}(\mathbf{k}) = \mathsf{Potential} \text{ energy at level } \mathbf{k} \text{ (buoyancy based)} \\ & \mathsf{KE}_{LS}(\mathbf{k}) = \mathsf{Kinetic} \text{ energy of resolved } \mathbf{K} \end{aligned}$

pe2ke_eff = Efficiency of PE->KE conversion (0.1 - 0.05, 0.2) P_{ini} = Cloud base parcel energy (5 - 2, 20) J/kg

Roode, Stephan R. et al. "Parameterization of the Vertical Velocity Equation for Shallow Cumulus Clouds." *Monthly Weather Review* 140 (2012): 2424-2436.

Simple Plume Dynamics

Community Earth System Model

Vertical Profile of Convection

- Convective top is where KE equals zero
- Top heavy convective mass flux, steady increase near surface
- Overshooting?

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific)

Convective Heating Change

Top Heaviness

- Near surface tendencies reduced
- Deep heating restored
- Maximum convective heating elevated

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific) Dec/Jan - 1992-93

Time

Convective Heating Change

Top Heaviness

- Near surface tendencies reduced
- Deep heating restored
- Maximum convective heating elevated

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific) Dec/Jan - 1992-93

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific)

Convective Heating Change

Top Heaviness

- Near surface tendencies reduced
- Deep heating restored
- Maximum convective heating elevated

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific) Dec/Jan - 1992-93

Community Earth System Mode

Parcel Vertical Range

- Cloud base more responsive to the environment with the PBL parcel changes
- Cloud top more responsive to the environment with the ZM KE changes

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific)

Parcel KE Characteristics

Community Earth System Model

Single Column CAM (SCAM) – ARM SGP (Oklahoma - JJA)

Parcel KE Characteristics

Regional sensitivities

- Tropical convection: +ve buoyancy limited
- Continental convection: -ve buoyancy limited (pini_ke important)

Single Column CAM (SCAM) – ARM SGP (Oklahoma - JJA)

Convective Parcel Sensitivity

Parameter Sensitivities

- Larger kini_ke important to overcome low-level CIN regions
- Larger pe2ke_eff impact has +/- buoyancy

Summary

Motivation

ZM PBL-based launch level properties in CAM6-dev Decreased ZM deep heating came in at CAM6 (single layer stability) Potential for L58 to be more sensitive (2x thinner layers)

Talk

Implemented a KE criteria (>0) for ZM plume viability Requires initial plume energy and PE->KE efficiency Performs well for tropics; noise, deep heating, convective top ARM site: marginal improvements, tuning of parameters needed

Next steps:

CAM simulations: Deeper convection, warmer tropopause Improve realism of energetics Implement a KE_{ini} based on CLUBB TKE.

Extra Slides

CAM6 Simulations (L32, 2 deg)

CAM Simulations (L32, 2 deg)

CAM Simulations (L32, 2 deg)

Remaining Deep Convection Issues

Top Heaviness

- Shallowed over time CAM3->CAM6
- Increased sensitivity to moisture (good for MJO, diurnal cycle)
- Compensation from non-convection physics
- Implications for lower stratosphere (QBO, tape recorder)??

Community Earth System Mode

Parcel Vertical Range

- Cloud base more responsive to the environment with the PBL parcel changes
- Cloud top more responsive to the environment with the ZM KE changes

Single Column CAM (SCAM) – TOGA COARE (Tropical W. Pacific)

Parcel vertical range

Solve

•

Solve