The effect of coupled chemistry in the quasi-biennial oscillation simulated with WACCM

Rolando Garcia & Yaga Richter NCAR

- use Whole Atmosphere Community Climate Model (WACCM), v. 5.4
 high vertical resolution (500 m) from boundary layer through ~10 hPa
- model is run with SST specified from observations, 1980-2010:
 this is the "experiment 1" protocol of QBOi ("present-day climate")
- two identical simulations (BCs, GW parameterization, etc.) except for:
 specified chemistry (exp1): O₃ and other chemical species specified
 coupled chemistry (exp1-chem): O₃ and other species calculated explicitly
- in this talk: examine the effect of interactive chemistry on the QBO

zonal wind QBO, Equator

- realistic QBO in both runs (descent past 70 hPa; E-W asymmetry; amplitude)
- coupled chemistry has larger amplitude than specified chemistry
- the same is true for QBO in T (not shown)
- period remains approximately constant (~28 months)

Zonal wind QBO from coherence analysis

QBO amplitude and phase, 1980-2010

- coherence analyses over QBO period band (15 50 months)
- triangles denote base point for coherence analysis
- QBO amplitude is larger, especially below ~ 10 hPa, in exp1-chem

U, T QBO structure, Equator

- coherence analyses over QBO period band (15 50 months)
- QBO in both U and T is stronger with coupled chemistry (exp1-chem)
 - ✓ T up to 30-35% stronger near 60-70 hPa; 15% stronger near 20-40 hPa
 - ✓ U not appreciably stronger at 70 hPa; about 10-20% stronger at 10-40 hPa
 - ✓ phase behavior (and period) are very similar in exp1 and exp1-chem

U, T QBO structure, Equator

- coherence analyses over QBO period band (15 50 months)
- QBO in both U and T is stronger with coupled chemistry (exp1-chem)
 - ✓ T up to 30-35% stronger near 60-70 hPa; 15% stronger near 20-40 hPa
 - ✓ U not appreciably stronger at 70 hPa; about 10-20% stronger at 10-40 hPa
 - ✓ phase behavior (and period) are very similar in exp1 and exp1-chem

QBO in Ozone, Equator: exp1-chem vs. SABER

- SABER Instrument on NASA's TIMED satellite (observations for 2002
- WACCM exp1-chem (1990-2010 shown) on left panel
- Ozone QBO in WACCM is in excellent overall agreement with SABER
- Ozone QBO signals are out of phase above / below \sim 20 hPa due to transport of NO_v / O₃

vertical transport and the ozone QBO

CESM Winter 2023

- QBO secondary circulation and O₃ anomalies:
 - ✓ above ~20 hPa: upward/downward transport of NO_y produces positive/negative O₃ anomalies
 - below 20 hPa: upward/downward transport of O₃
 produces negative/positive O₃ anomalies
- These processes are well known and understood, e.g., Gray and Pyle (JAS 1989); Chipperfield et al (GRL 1994); Li et al. (QJRMS 1995); Tian et al. (JGR 2006); Park et al. (JGR 2017); Zhang et al. (Atmos. Env. 2020); etc.
- They are well simulated in WACCM
- How does the O₃ QBO affect the dynamical QBO?

structure of the QBO in O_3 and O_3 heating

- coherence analysis over QBO period band (15 50 months)
- ozone QBO is largest, as a fraction of local time-mean ozone, below 20 hPa
- the resulting QBO in ozone heating is
 - ✓ relatively large below 20 hPa (~ 8-10% of time-mean)
 - ✓ relatively small above 20 hPa (≤ 5%)

linearized analysis for the lower stratosphere

- $i\sigma T + w^*S = -\alpha T + \frac{Q_3}{Q_3}$
- $i\sigma T + w^*S = -\alpha T + \frac{\gamma O_3}{\gamma O_3}$

$$i\sigma O_3 + w^* O_{3z} = -\delta O_3$$

(1) thermodynamic equation

(2) linearized ozone heating

(3) (approximate) ozone balance

Combine (2) and (3)

$$(i\sigma + \alpha)T = -w^* \left\{ S + \gamma \cdot \frac{O_{3z}}{i\sigma + \delta} \right\}$$

Solve for T:

$$T = -\left\{\frac{S + \gamma \cdot \frac{O_{3z}}{i\sigma + \delta}}{i\sigma + \alpha}\right\} \cdot w^*$$

where:

S: static stability parameter

 γ : linear ozone heating coefficient

 δ : ozone loss rate

α: Newtonian cooling coefficient

σ: QBO frequency

CESM Winter 2023

linearized analysis for the lower stratosphere

- $i\sigma T + w^*S = -\alpha T + \frac{Q_3}{Q_3}$
- $i\sigma T + w^*S = -\alpha T + \frac{\gamma O_3}{\gamma O_3}$

$$i\sigma O_3 + w^* O_{3z} = -\delta O_3$$

Combine (2) and (3)

$$(i\sigma + \alpha)T = -w^* \left\{ S + \gamma \cdot \frac{O_{3z}}{i\sigma + \delta} \right\}$$

(1) thermodynamic equation

(2) linearized ozone heating

(3) (approximate) ozone balance

 $T = -\frac{Sw^*}{i\sigma + \alpha}$ ozone heating effectively increases static stability

compare with T without O_3 heating

Solve for T:

 $T = -\left\{\frac{S + \gamma \cdot \frac{O_{3z}}{i\sigma + \delta}}{i\sigma + \alpha}\right\} \cdot w^*$

where:

- S: static stability parameter
- γ : linear ozone heating coefficient

 δ : ozone loss rate

- α: Newtonian cooling coefficient
- σ : QBO frequency

CESM Winter 2023

... linearized analysis

Ratio $T(O_3) / T$ (no O_3), assuming constant w^* :

using representative values for the various parameters one gets:

p (hPa)	T(O ₃)	T(no O ₃)	ratio
30	3.1	2.6	1.22
50	3.1	2.6	1.23
60	2.5	2.0	1.40

values in the table are in reasonable agreement with model values for T and for the ratio $T(O_3) / T(no O_3)$

compare with model results:

zonal wind QBO

enhancement of QBO in U in exp1-chem occurs at higher altitude

near the Equator:

$$U_z = \frac{1}{\beta} \cdot \frac{R}{H} \cdot \frac{T}{L^2}$$

L

such that U(z) is the integral of the T anomaly between the lower boundary of the QBO, z_0 , and any level z:

$$U(z) = U(z_0) + \int_{z_0}^{z} \frac{1}{\beta} \cdot \frac{R}{H} \cdot \frac{T(z')}{L^2} dz'$$

summary

• WACCM with coupled chemistry simulates a realistic QBO in *U*, *T*, *O*₃
 ✓ larger amplitude *U* and *T* than in the same model without chemistry
 • QBO in ozone modulates ozone heating by 8-10% below 20 hPa
 ✓ amplifies QBO temperature signal by 15-35%, depending on altitude
 ✓ amplifies zonal wind signal by 10-20%

• a simple, linearized analysis is qualitatively consistent with model results