Parametric sensitivity of cloud feedbacks in CAM6

Margaret L. Duffy, Brian Medeiros, Andrew Gettelman, Trude Eidhammer NCAR

mlduffy@ucar.edu

NCAR UCAR

Equilibrium climate sensitivity (ECS) quantifies global warming... and is very uncertain!

• Global mean surface warming per doubling of atmospheric CO₂, at equilibrium

a) Evolution of equilibrium climate sensitivity assessments from Charney to AR6

Year of assessment

How does ECS relate to cloud feedbacks?

Spread in feedbacks is largely from cloud feedbacks

Range of ECS estimates increased from CMIP5 to CMIP6

Here we focus on the influence of atmospheric **parameters** on cloud feedbacks

We vary 45 atmospheric parameters from 5 different schemes

- CAM6 atmosphere only
- 45 atmospheric parameters vary
- 3 years each
- Fixed SST
- PD: Present day simulation
- SST4K: Uniform 4K warming simulation
- 262 simulations are run

A TOA radiative imbalance of 0 W m⁻² indicates equilibrium

- CAM6 atmosphere only
- 45 atmospheric parameters vary
 - 3 years each
- Fixed SST
- PD: Present day simulation
- SST4K: Uniform 4K warming simulation
- 262 simulations are run

A TOA radiative imbalance of 0 W m⁻² indicates equilibrium

- CAM6 atmosphere only
- 45 atmospheric parameters vary
- 3 years each
- Fixed SST
- PD: Present day simulation
- SST4K: Uniform 4K warming simulation
- 262 simulations are run
- 206 simulations are used here

- CAM6 atmosphere only
- 45 atmospheric parameters vary
- 3 years each
- Fixed SST
- PD: Present day simulation
- SST4K: Uniform 4K warming simulation
- 262 simulations are run
- 206 simulations are used here

Is it a coincidence that the parametric spread in CAM6 and CMIP6 models have comparable spreads? Radiative feedbacks

SW and LW cloud feedbacks have comparable spreads across CMIP6 and the PPE

Is it a coincidence that the parametric spread in CAM6 and CMIP6 models have comparable spreads?

Which parameters control the spread?

Scheme	Parameter	Correlation
Microphysics	Ice-snow autoconversion size threshold	0.41
Convection	Triggering threshold for convection	0.32
Turbulence	Skewness coefficient	0.26

Which parameters control the spread?

Are changes in parameters responsible for the increase in ECS from CAM5 to CAM6?

• We use the PPE to build a model for feedbacks as a function of parameter

- $\boldsymbol{\lambda}$ feedback
- *i* parameter index (1-45)
- a_i regression coefficient
- p_i parameter value

Changes in parameter values from CAM5 to CAM6 are **not** responsible for the change in cloud feedbacks

Changes in parameter values from CAM5 to CAM6 are **not** responsible for the change in cloud feedbacks

Summary

- Is it a coincidence that the parametric spread in CAM6 and CMIP6 models have comparable spreads?
 - Similar spreads across individual assessed feedbacks suggests it's NOT a coincidence
- Which parameters control the spread in cloud feedbacks?
 - One microphysics parameter, one convection parameter, one turbulence parameter
- Are changes in parameters responsible for the increase in ECS from CAM5 to CAM6?

• No

NCAR UCAR

Margaret L. Duffy mlduffy@ucar.edu

Cloud feedbacks can be partitioned in shortwave and longwave cloud feedbacks

