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Background

Global emissions were estimated for
nearly 50 non-CO, greenhouse gases
and ozone depleting substances for
the 2022 Scientific Assessment of
Ozone Depletion

Ozone assessment is every 4 years,
plus many additional scientific papers

Emissions are derived using 2 global
networks of surface mole fraction
measurements and a model of
atmospheric transport

Routine emissions updates are
performed by ~3 people globally
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Current practice

* Box models generally provide
models of atmospheric transport

e Combined with surface
measurements and inversion
framework to derive emissions

* Annually repeating parameterised
dynamics

* Lack any large-scale variability
* Models consist of 1-12 boxes

* Limited representation in space
and time
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Model description

* Two-dimensional (zonal mean) model of
atmospheric transport (10° x ~1.2km)

* Driven by MERRA reanalysis fields
* Monthly varying transport

* Eddy transport processes derived from
tracer experiments in GEOS-Chem

* Progress with 2D atmospheric models
stagnated in 90s; progress has been
made in ocean literature

e Offline chemistry




Derivation of model parameters

~ Eddy flux tensor derived from ensemble of
orthogonal tracer experiments

e Residual velocities and diffusion derived
from this

e 2D model haazs mixed derivative diffusive
term (Dy 1 ), which has generally been

Z 9yoz T
neglected or unphysical in 2D models

* A new positivity, mass and concentration-
preserving mixed derivate diffusion
implemented

e Offline losses taken from literature
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Validation: Comparison of modelled surface

mole fractions

* Comparison of surface mole fractions at
NOAA measurement site locations

* All models using same emissions

* 12-box model generally performs well
when measurement site at sea level

e Large improvement with 2D model when
modelling measurements made at
elevation

* Down to poor vertical resolution in box
models which may bias emissions
estimates
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Validation: SF6 emissions estimates

* Use “surface concentrations” from »
3D model to estimate emissions =
* Emissions kept constant in time to I D A
produce synthetic dataset '§
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Representation of the Quasi Biennial Oscillation

* Question whether representation of
large-scale dynamics (e.g., zonally
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Future direction

* Implement sinks for more trace
gases

* Derive emissions using real
measurements

e Compare upper atmosphere
concentrations to, e.g., ACE

* Publish openly and accessibly
* Explore more applications
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