A New Simplified Parameterization of Secondary Organic Aerosol in the Community Earth System Model Version 2 (CESM2)

Duseong S. Jo¹, Simone Tilmes¹, Louisa K. Emmons¹, Siyuan Wang², and Francis Vitt¹

NCAR ACOM
NOAA CSL

January 30, 2023 14:20

Organic aerosol contributes substantial mass fractions of submicron aerosols

Atmospheric Chemistry Observations and Modeling Laboratory

UCAR

Zhang et al. (2007)

Secondary organic aerosol (SOA) is accounting for 63 – 95% of the total OA

Organic aerosol is also important in terms of the Earth's radiation balance

SOA scheme not only affects SOA burden, but POM (or POA) and BC in CESM2

Table 5CAM SOACAM-chem SOAAerosol Burden Separated Into Different Modes, Preindustrial Conditions

SOA WACCM6-SOAG WACCM6-VBSext Difference Rel diff (%) Burden (Tg) 0.915 0.791 0.124 13.53 Accumulation 0.907 0.123 13.51 0.785 Aitken 0.008 0.007 0.001 7.88 Burden (Tg) (<500 hPa) 0.526 0.105 19.95 0.421 POM WACCM6-SOAG WACCM6-VBSext Difference Rel diff (%) 0.112 Burden (Tg) 0.517 0.405 21.60 Accumulation 0.280 -0.028-10.110.308 Primary carbon 0.237 0.097 0.140 59.00 Burden (Tg) (<500 hPa) 0.402 0.323 0.079 19.72 BC WACCM6-SOAG WACCM6-VBSext Difference Rel diff (%) Burden (Tg) 0.051 0.042 0.009 17.68 Accumulation 0.029 0.032 -11.41-0.003Primary carbon 0.023 0.010 0.012 54.70 Burden (Tg) (<500 hPa) 0.040 0.033 0.007 16.86 SO4 WACCM6-SOAG WACCM6-VBSext Difference Rel diff (%) Burden (Tg S) 0.512 0.515 -0.003-0.67Accumulation -6.750.330 0.353 -0.0228.71 Aitken 0.019 0.017 0.002 0.163 0.017 Coarse 0.145 10.59 Burden (Tg S) (<500 hPa) 0.089 1.00 0.088 0.001

Primary organic matter (POM) and Black carbon (BC) increased by ~20% when using the simplified SOA scheme compared to the VBS scheme (Tilmes et al., 2019)

Goal of this study

- (1) Consistent SOA concentrations between CAM and CAM-chem (and WACCM)
- (2) Consistent **BC** and **POM** concentrations between CAM and CAM-chem (and WACCM)
- (3) Consistent **radiation fields** between CAM and CAM-chem (and WACCM)

UCAR

Atmospheric Chemistry Observations and Modeling Laboratory

Gas

Aerosol

Partitioning

Gas

Aerosol

Partitioning

Seasonalities and vertical distributions of SOA, BC, and POA (or POM) in 2013 (nudged)

1-year simulation with T, U and V nudged to MERRA2

Spatial distributions of SOA at ~100 hPa

1-year simulation with T, U and V nudged to MERRA2

Spatial distributions of SOA at ~500 hPa

Spatial distributions of BC and POA at ~100 hPa and ~500 hPa

Zonal averages of the radiation difference in 2013 between CAM and CAM-chem

1-year simulation with T, U and V nudged to MERRA2

Historical run results (1850s and 2000s) - Aerosol burdens

Zonal averages of the radiation (SW + LW) difference in historical runs between CAM and CAM-chem

Summary

Organic aerosols represent a significant fraction of aerosols in the atmosphere and are important for Earth's radiation balance.

Compared to CAM-chem, the high bias of radiative flux in the Arctic region is significantly reduced for both nudged and free-running CAM simulations with the new parameterization.

The new simplified SOA scheme has been developed for the consistent aerosol and radiation fields between CAM and CAM-chem, without adding much computational cost.

With the new SOA scheme, more consistent temporal and spatial distributions of SOA, BC, and POA have been obtained.

Thank you!

