

AC

CESM Atmosphere / Whole Atmosphere / Chemistry Climate WINTER WORKING GROUP MEETING

Comparing the effect of Natural Halogens on Tropospheric Ozone Chemistry between Pre-Industrial and Present-Day

Javier A. Barrera^{1,2,3}, Douglas E. Kinnison^{4*}, Rafael P. Fernandez^{1,5,6}, Jean-François

Lamarque⁷, Carlos A. Cuevas¹, Simone Tilmes⁴ and Alfonso Saiz-Lopez^{1*}

¹ Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain. ² Research Institute for Physical Chemistry of Cordoba (INFIQC-CONICET), Córdoba, Argentina.

- ³ Department of Physical Chemistry, School of Chemical Sciences. National University of Córdoba, Córdoba, Argentina.
- ⁴ Atmospheric Chemistry Observations and Modelling, National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.
- ⁵ Institute for Interdisciplinary Science, National Research Council (ICB-CONICET), Mendoza, Argentina.
- ⁶ School of Natural Sciences, National University of Cuyo (FCEN-UNCuyo), Mendoza, Argentina
- ⁷ Climate and Global Dynamics Laboratory, NCAR, Boulder, CO, USA

Submitted to JGR. Corresponding authors: Saiz-Lopez A. & Kinnison D. E.

1. What are the natural sources of halogens?

- <u>Very short-lived halocarbons</u> (VSLs) have a photochemical lifetimes < 6 months and are naturally released from the ocean via the metabolism of marine organisms such as phytoplankton and algae.
- The current CAM-Chem set-up considers the Ordonez et al., (2012) emissions inventory by nine VSLs (CHBr₃, CH₂Br₂, CH₂BrCl, CHBr₂Cl, CHBrCl₂, CH₂IBr, CH₃I, CH₂I₂ and CH₂ICl), based on chlorophyll-a maps (SeaWIFS).

Estimated global ocean emissions for the most abundant VSLs:

 $CHBr_3 = 533 \text{ Gg yr}^{-1}$

 $CH_2Br_2 = 67.3 \text{ Gg yr}^{-1}$

Ordoñez et al., ACP, 2012

(top) annual oceanic bromine flux from the six VSL^{Br} included in the Ordóñez et al., (2012) emissions inventory (bottom) annual VSL^{Br} mixing ratio at the model surface

Ocean source of inorganic iodine

- This route accounts for up to 75% of iodine atmospheric budget
- The iodine flux strongly depends on the model surface O_3 levels

Carpenter et al., Nat. Coms, 2013 MacDonald et al., ACP, 2014

Geochemical feedback mechanism

↑ near-surface ozone $\rightarrow \rightarrow$ ↑ iodine flux $\rightarrow \rightarrow$ ↑ ozone loss driven lodine

Ozone-Iodine negative feedback mechanism

Prados-Roman et al., ACP, 2015

SSA-dehalogenation (Br and Cl source)

2. CAM-Chem simulation design

- 1. Specified dynamic simulation
- 2. All simulations have identical meteorology under pre-industrial (PI) and present-day (PD) conditions
- 3. Emissions:
 - Long-lived halocarbon: are zeroed for PI & from the WMO (2011) recommendation for PD
 - NO_x, CO and NMVOCs: from IPCC (2019) in both periods
 - greenhouse gas (i.e., CH₄, CO₂, and N₂O): from Meinshausen et al. (2011) in both periods

Scenario	LL	VSL	I ₂ /HOI	SSA-
Name	halocarbons	halocarbons	Emissions	recycling
	LBC	Emissions		Emissions
REF	YES	NO	NO	NO
VSL_I	YES	YES	YES	NO
VSL_Br	YES	YES	NO	YES
VSL_Cl	YES	YES	NO	YES
VSL_ALL	YES	YES	YES	YES

3. Result: background changes between PI and PD

3. Changes in inorganic halogen partitioning

3. Changes in inorganic halogen partitioning

- Similar to iodine, there is a strong partitioning into reservoirs mainly in the lower troposphere
- The PI to PD increase in Cl_v is due to:
 - stratospheric-to-tropospheric transport of Cl_v rich air masses
 - enhanced SSA-dehalogenation driven by more halogens
 - chlorine production from odd-nitrogen uptake in SSA driven by an increase in near-surface NO_x abundance

3. Changes in inorganic halogen partitioning

Tropospheric Br_v is slightly reduced in the transition PI to PD:

- VSL bromocarbons emissions are assumed equal in both periods
- increased conversion of reactive to reservoirs improves the bromine wet-removal via washout and scavenging

3. Changes in global tropospheric ozone

- In percentage terms, halogens induce a larger ozone depletion in PI (-14 %) than PD (-13 %)
- This effect is mainly governed by iodine and then bromine
- Individually:
- iodine has a role equal in both periods (-7 %)
- bromine has a larger role in PI (-5 %) vs. PD (-4%)
- Chlorine has a larger role in PD (-2.5%) vs. (PI: -2 %)

3. Changes in tropospheric ozone distribution

3. Changes in tropospheric ozone distribution

Unlike iodine, the impact of bromine and chlorine is reduced over these latitudes in the PI to PD transition

3. Changes in tropospheric ozone distribution

Chlorine production intensifies in the transition from PI to PD

3. Changes in ozone vertical distribution

Thanks you for your attention