

Quantifying the uncertainty in climate response to stratospheric aerosol injection from gravity wave parametrizations in CESM2(WACCM)

(work in progress...)

Ewa Bednarz

Yaga Richter, Daniele Visioni, Julio Bacmeister, Doug MacMartin, Jack Chen, Amy Butler

NCAR, 01 February 2023

Background – Stratospheric Aerosol Injection (SAI)

- $SO_{2} + OH -> H_{2}SO_{4}(g)$ -> -> $SO_{4}(aq)$ strat Sulfate aerose CO.
- Injection of sulfate aerosol precursors into the lower stratosphere => aerosols reflect solar radiation => ↓T_{trop}

Background – Stratospheric Aerosol Injection (SAI)

 Injection of sulfate aerosol precursors into the lower stratosphere => aerosols reflect solar radiation => ↓T_{trop}

Many uncertainties:

- the efficiency of SO₂ to aerosol conversion, and its later removal
- transport of aerosols by the BDC+mixing
- efficiency of direct impact on radiative balance
- indirect impacts (many!)

Background – Stratospheric Aerosol Injection (SAI)

- Injection of sulfate aerosol precursors into the lower stratosphere => aerosols reflect solar radiation => ↓T_{trop}
- Many uncertainties:
- the efficiency of SO_2 to a erosol conversion, and its later removal
- transport of aerosols by the BDC+mixing
- efficiency of direct impact on radiative balance
- indirect impacts (many!)

Current convective GW parametrization:

- following Beres et al. (2004)
- largely drives QBO in the L70 model
- wave phase speeds related to:
 - depth of convective heating region
 - maximum convective heating
 - zonal wind in heating region
- => QBO speeds up in warming climate as GW amplitude increases

Standard WACCM6-MA L70 version has QBO with too weak amplitude (esp. in lower stratosphere) and somewhat shorter period compared to ERA5

Here: Uncoupled convective GWs from convective heating ('GWfixed'):

- climatological heating area, heating depth, and heating amplitude

- get different amplitude and period of QBO, prevents QBO from speeding up as much

QBO Period:	<u>2020 – 2060</u>	<u> 2060 - 2100</u>
SSP2-4.5 MA:	21.3 mo	16.7 mo
GWfixed:	27.9 mo	24.9 mo

Here: Uncoupled convective GWs from convective heating ('GWfixed'):

- climatological heating area, heating depth, and heating amplitude

- get different amplitude and period of QBO, prevents QBO from speeding up as much

-> GWfixed has stronger amplitude, but still mainly above 30 hPa

CESM2(WACCM6-MA) SAI simulations:

Constant 12 Tg-SO₂/yr injections over 2035-2069 at EQ and either:

- 22 km (~50 hPa, like ARISE-SAI) or
- 25 km (~30 hPa, like GLENS)

- Perturbing QBO has little impact on AOD for injections at 22 km in this model version
- For 25 km injections, GWfixed has higher AOD at equator and lower AOD in NH (~10%)

- No clear impacts on NH yearly mean T_{as} (except in the subtropics)
- But: lower T_{as} in the SH mid-/high latitudes (?)

2

-2

⁶ Different (stronger) climatological SH polar ⁴ vortex in GWfixed

- -> QBO teleconnection (~Holton Tan) ?
- -> differences in GW flux outside of the tropics ?
- -> does the anomaly get amplified under SAI ?

Orographic GW parametrization:

- new in CESM2
- following Scinocca and McFarlane (2000)
- controls primarily extratropical stratospheric circulation (U, BDC)

A number of tuneable parameters, including 'effgw_rdg_beta' and 'effgw_rdg_beta_max' that control the scheme's efficiency

- -> default = 1
- -> here vary between 0.1 3.0

-> polar vortex too strong in CESM2 in SH and a bit too weak (in DJF) in NH

-> polar vortex too strong in CESM2 in SH and a bit too weak (in DJF) in NH

-> can modify the GW efficiency to make them stronger (= reduced GW drag)

-> polar vortex too strong in CESM2 in SH and a bit too weak (in DJF) in NH

-> can modify the GW efficiency to make them stronger (= reduced GW drag)

-> can modify the GW efficiency to make them weaker (= increased GW drag)

-> use two high- and low- end values of orographic GW drag

-> use two more extreme values of orographic GW drag

-> SAI simulations: constant 12 Tg-SO,/yr injections at 22 km and either 30°N or 30°S

- Preliminary results from initial 10-years of simulations
- Larger differences between high and low OROGWD (~10%) in winter/spring

Outlook:

- Sensitivity for 15N/15S emissions?
- Only 10 years of data longer simulations in pipeline
- Impacts on surface T response?
- Impacts on stratospheric O₃ response? (heterogenous chemistry + transport)?
- Impacts on the high latitude dynamical response?

Thank you for your attention! And stay tuned for future updates 😂

Ewa Bednarz (ewa.bednarz@noaa.gov)

Yaga Richter, Daniele Visioni, Julio Bacmeister, Doug MacMartin, Jack Chen, Amy Butler

NCAR, 01 February 2023