Inclusion of Inline photolysis module (TUV-x) in CESM2 MUSICAv0

Matt Dawson, Stacy Walters, Kyle Shores, Doug Kinnison

CCWG / WAWG Session NCAR/ACOM, 1 February 2023

NCAR

Presentation Outline

NCAR

- Briefly describe the "new" TUV-x
- Show how TUV-x fits into the master plan for photolysis needs at NCAR
- Why do we need to move on from the LUT approach for global modeling?
- First results using inline TUV-x in CESM2 (MUSICAv0), i.e., CAM-Chem
- Special needs for WACCM

Tropospheric Ultraviolet Visible extension TUV-x (Madronich et al., Original TUV Code)

NCAR

- Portable... presents a single interface that is usable in multiple contexts
- Builds as a software library. Build once and link to from any application
- Configurable (data-driven)
- Maintainable (ready for new science)
- Can include a representation aerosols and clouds in radiative transfer

TUV-x Configurability

NCAR

- Moved hard-coded configuration details to JSON data files
- Reusable datatypes allow run-time addition/modification of:
 - Cross sections
 - Quantum yields
 - Absorbing species
 - and more!

```
"name": "BrONO2+hv->BrO+NO2",
   "cross section": {
      "netcdf files": [
        { "file path": "data/cross_sections/BrON02_1.nc" }
      "type": "base"
   },
   "quantum yield": {
      "type": "base",
      "constant value": 0.15
   "name": "BrONO2+hv->Br+NO3",
   "cross section": {
      "netcdf files": [
        { "file path": "data/cross_sections/BrON02_1.nc" }
      "type": "base"
   "quantum yield": {
      "type": "base",
      "constant value": 0.85
},
   "name": "BrCl+hv->Br+Cl",
   "cross section": {
      "netcdf files": [
        { "file path": "data/cross_sections/BrCl_1.nc" }
       "type": "base"
   "quantum yield": {
      "type": "base",
      "constant value": 1.0
```


Tropospheric Ultraviolet Visible extension TUV-x Access

 Try out stand-alone <u>TUV-x</u> (<u>https://github.com/NCAR/tuv-x</u>)

- Quick-start instructions on the GitHub repo for running stand-alone TUV-x in a Docker containers
- Send feedback to Matthew Dawson: mattdawson@ucar.edu

Getting Started

Installation

Docker

The quickest way to get started with TUV-x is with Docker. The only requirement is that you have Docker Desktop installed and running. With Docker Desktop running, open a terminal window.

To get the latest release of TUV-x, run the following command to start the TUV-x container:

docker run -it ghcr.io/NCAR/tuv-x:release bash

To get the most recent, pre-release version of TUV-x instead run:

docker run -it ghcr.io/NCAR/tuv-x:main bash

Inside the container, you can run the TUV-x tests from the /build/ folder:

cd build/
make test

NCAR

TUV-Webpage

231,663 calculations since 2016-02-09 (113 photolysis rates). https://www.acom.ucar.edu/Models/TUV/Interactive_TUV/

QUICK TUV CALCULATOR

This web page runs the 5.3 version of the TUV model. You can run the model for a specified latitude, longitude and time (input option 1), or for a given solar zenith angle (input option 2). In either case, you must also specify the additional parameters in the second column. Also, you may select to print out the photolysis rates and/or the solar actinic flux spectrum at a given altitude above the surface (output option 1), or the erythemal UV and/or solar irradiance at that altitude (output option 2). For any problem, or to send comments, email TUV administrators.

O Pseudo-spherical discrete ordinate 4 streams (slower, more accurate)

NACCM

TUV connections to HARP/CAFS airborne actinic flux measurements

TUV provides	Benefits/examples	171001 ATom 3 NASA DC-8
Photolysis frequency calculations for measured and modeled actinic flux	Measurement/model consistencyIdentical absorption cross-sectionsIdentical quantum yields	70°N
Clear-sky calculations of up/down actinic flux and photolysis frequencies along flight track	 Project continuity (since 1996) ACCLIP calibration issue identification and analysis 	Le 1.1 Li
Measurement/TUV ratio removes SZA and altitude impacts	 Identification of cloud, aerosol, albedo and ozone column impacts Statistical comparisons to global models (Hall et al., 2018) 	22 ratio (Measure
Cloud/aerosol, ozone column, albedo parameters	 ACCDAM satellite trace gas retrievals DC3 optical depths KORUS-AQ aerosol impacts CONTRAST jet stream ozone 	40°N 500 km 500 km 500 mi 0.8 Cloud extinction 0.7
Spectral absorption analysis	Remote sensing smoke detection (up/down)	165°W 150°W 135°W 120°W Longitude

Contact: Sam Hall (<u>halls@ucar.edu</u>) and Kirk Ullmann (<u>ullmannk@ucar.edu</u>)

Global modeling needs for influence of species and aerosols that impact the radiative transfer / photolysis rates

NCAR

Representation of a wide range of Science Projects, e.g.

- Present day atmosphere under various volcanic sulfate/soot loadings and possible Geoengineering studies (Tilmes).
- Large wildfire (pyroCb) towers where injections of soot, organic aerosols are included (Solomon).
- Early earth atmospheres where O₂ and O₃ are not major absorbers (Marsh).
- ➤ Asteroid impact scenarios where there is a large perturbation of soot, H₂O, NOx, and halogens (Bardeen, Garcia).
- Nuclear war scenarios where soot, organic aerosols, NOx are elevated (Bardeen, Kinnison).

CESM2 Inline vs LUT

Wavelength range: 175-205nm

NCAR

Wavelength range: ~310-411nm

CESM2 Inline vs LUT

Wavelength range: 240-650nm

Wavelength range: 210-365nm

NCAR

CESM2 Inline vs LUT

Summary: Need to check all cross section and quantum yield values and implementation in TUV-x.

Will compare to TUV (v5.3) and the LUT databases.

NCAR

Wavelength range: 170-362nm

Solar Heating Rate Approach in WACCM

NCAR

Merge Solar Heating Approaches for WACCM

VACCM

Whole Atmosphere Community Climate Model

NCAR

Next Step

- Finish integration of TUV-x into MUSICAv0
- Test with aerosol input (e.g., Sulfate, Soot)
- Aim for 4-stream discrete ordnance radiative transfer (RT) May need to optimize wavelength grid for computational efficiency? Could also use 2-stream RT
- Derive heating rates for high top (WACCM) to address chemical potential heating.
- Add cloud fraction approach to RT

Evaluate model chemical composition with LUT approach and Observations Evaluate with CloudJ (Prather) when available

Extra Slide

CESM2-MUSICAv0

Ph	otolysis: e.g., O ₂ + l d[O ₂]/dt =	$v \rightarrow O(^{3}P) + O(^{1}D)$ $J_{02}[O_{2}]$	
<= EUV (LUT)	(p) = $\sum_{\lambda} F_{exo} (\lambda) \times N_{f}$	_{lux} (p, λ) × σ (λ) × φ (λ)	
Inline (33 Bi	ns)	LUT (67Bins)	
121 nm	200 nm	750 nm	
Inline Calculation: • JO ₂ Lyman Alpha • JO ₂ SRB	F _{exo} : Lea Mo N _{flux} (no (Ma	In (λ) dependent extraterrestrial flux. dified by the Earth-Sun distance (esfact). rmalized flux) is based on TUV adronich), 4-stream radiative transfer.	
 JNO SRB σ x φ for all other J² N_{flux} (p, λ) is funct. φ 	's SZA of (O ₃ , O ₂) LUT: σ (_x (p, λ) is function of (pressure, col. O ₃ , A, Albedo) λ) x φ (λ) is function of (T, p)	
Heating and		CAM4 SW Heating rates	

Photolysis rates

Cloud correction factor is applied to total J (Madronich).